386 – CHEMICELL s viluppa e produce sistemi innovativi di bioseparazione-trasfezione genica e di rilevamento basati su NANO e MICRO PARTICELLE MAGNETICHE. Magnetofection ™ – la nuova tecnologia di trasfezione genica

chemicella
CASA

Benvenuto in chemicell!

chemicell sviluppa e produce sistemi innovativi di bioseparazione-trasfezione genica e di rilevamento basati su nano e microparticelle magnetiche. Il focus dello sviluppo del nostro prodotto è quello di progettare kit “pronti all’uso” orientati al cliente di alta qualità con un orientamento speciale verso la compatibilità per l’automazione del lavoro. È politica di chemicell essere aperta a collaborazioni con altre aziende o istituti scientifici per massimizzare le possibilità e le opportunità che evolvono dal rapido sviluppo delle procedure biotecnologiche e per distribuire nuovi prodotti innovativi.

TOP Highlight – Nuovi prodotti

nano-screenMAG

Per ampliare la gamma di prodotti nano-screenMAG , ora offriamo le nostre particelle nano-screenMAG con un colorante fluorescente rosa brillante.

Le particelle nano-screenMAG sono costituite da un nucleo di magnetite che viene prima ricoperto da un colorante a fluorescenza lipofilo.

nano-screenMAG emette luce nell’intervallo del blu (Esc. = 378 nm / Emmax. = 413 nm), del verde (Esc. = 476 nm / Emmax. = 490 nm), dell’arancione (Esc. = 524 nm / Emmax. = 539 nm), luce rosa (Esc. = 547 nm / Emmax. = 581 nm ) e rossa ( Esc . = 578 nm / Emmax. = 613 nm).

Di più

NUOVO! Sono disponibili microsfere non magnetiche screenCORE con proprietà di fluorescenza aggiuntive!

Gli screenCORE sono microsfere fluorescenti, non magnetiche, monodisperse di 1 dimensione basate su una matrice di silice.

Il vantaggio delle microsfere di silice rispetto alle microsfere di polistirene sono la matrice di silice in fase solida inerte e stabile senza autofluorescenza e sono sterilizzate in autoclave per applicazioni sterili.


screenCORE-Amine

Di più

Nuove nanoparticelle magnetiche fluidMAG-PEG / ammina

chemicell offre ora nanoparticelle magnetiche fluidMAG-PEG / Amine. Questi composti magnetici PEG/Ammina sono utili per l’accoppiamento covalente con i gruppi carbossilici della molecola bersaglio (es. peptide, proteina).

Di più

Nuovi derivati ​​PEG-Ammina

chemicell offre ora derivati ​​amminici PEG con diverse lunghezze di catena PEG. Questi composti PEG-amminici sono utili per l’accoppiamento di accordi con gruppi carbossilici o amminici della molecola bersaglio (ad es. peptidi, proteine).

La pegilazione, la modifica di una proteina, di un peptide o di un’altra molecola bersaglio mediante il collegamento di una o più catene di polietilenglicole (PEG), è uno strumento utile per migliorare la stabilità di una proteina. Ciò comporta una residenza prolungata nel corpo, una ridotta degradazione da parte degli enzimi metabolici e una riduzione o eliminazione dell’immunogenicità proteica.

Di più

Le ZeoliteMAG sono particelle magnetiche di zeolite, costituite da un nucleo di ossido di ferro superparamagnetico e da una matrice di alluminosilicato altamente poroso.

La struttura microporosa della zeolite è a carica anionica e quindi utile come scambiatore cationico ad alta capacità per la separazione di sostanze a carica cationica.

ZeoliteMAG

Di più

beadBALL

beadBALL sono microsfere non magnetiche, monodisperse, di 1 misura, basate su una matrice di cloruro di polivinile altamente meccanica e chimicamente stabile.

perlina ?? le microsfere sono utili per il legame covalente di ligandi bioaffini, come proteine ​​o anticorpi.

beadBALL

Di più

Magnetofection ™

Descrizione

Magnetofection ™ è un metodo nuovo, semplice e altamente efficiente per trasfettare le cellule in coltura. Sfrutta la forza magnetica esercitata sui vettori genici associati alle particelle magnetiche per attirare i vettori verso, forse anche dentro, le cellule bersaglio. In questo modo, l’intera dose di vettore applicata viene concentrata sulle cellule in pochi minuti in modo che il 100% delle cellule venga a contatto con una dose di vettore significativa. Questo ha diverse importanti conseguenze:

  • Tassi di trasfezione notevolmente migliorati in termini di percentuale di cellule trasfettate rispetto alla trasfezione standard.
  • Livelli di espressione transgenica aumentati fino a diverse migliaia di volte rispetto alle trasfezioni standard dopo incubazione a breve termine.
  • Elevati tassi di trasfezione e livelli di espressione transgenica sono ottenibili con dosi di vettori estremamente basse, che consentono di risparmiare costosi reagenti di trasfezione.
  • Tempo di processo estremamente breve. Pochi minuti di incubazione di cellule con vettori genici sono sufficienti per generare un’elevata efficienza di trasfezione, rispetto a diverse ore con procedure standard.
Principio della magnetofezione

Tecnologia

Reagenti Magnetofection ™

In qualità di produttore della tecnologia Magnetofection, chemicell offre due tipi di reagenti Magnetofection pronti all’uso.

PolyMAG è una preparazione di particelle magnetiche universalmente applicabile per la consegna di acido nucleico ad alta efficienza. Viene miscelato in una procedura one-step con l’acido nucleico da trasfettare ed è stato utilizzato con successo con DNA plasmidico, oligonucleotidi antisenso e siRNA.

CombiMAG è un preparato di particelle magnetiche progettato per essere combinato con qualsiasi reagente di trasfezione disponibile in commercio come policationi e lipidi e può essere associato a DNA plasmidico, oligonucleotidi antisenso, siRNA o virus. Ti consente di creare il tuo vettore di geni magnetici in base al tuo reagente di trasfezione preferito.

Notifica dell’acquirente
I reagenti Magnetofection ™ e tutti i suoi componenti sono sviluppati, progettati, destinati e venduti solo per uso di ricerca. Non devono essere utilizzati per la diagnostica umana o per qualsiasi farmaco destinato.
Magnetofection ™ sono marchi registrati

Cinetica della risposta alla dose e della trasfezione degli acidi nucleici

Cinetica di trasfezione: le cellule NIH 3T3 sono state incubate con GenePorter ™ (Sistemi di terapia genica) ± CombiMAG con e senza posizionamento sulla piastra MagnetoFACTOR per gli intervalli di tempo indicati. L’espressione della luciferasi è stata valutata dopo 24 ore.

veicolo paramagnetico più campo magnetico
veicolo paramagnetico nessun campo magnetico
trasferimento genico standard

Profilo dose-risposta in cellule NIH 3T3 utilizzando Lipofectamine ™ (Invitrogen) ± CombiMAG con e senza posizionamento sulla piastra MagnetoFACTOR per 15 min. L’espressione della luciferasi è stata valutata dopo 24 ore.

Applicazioni

Magnetofection ™ è generalmente applicabile alle cellule aderenti ed è stato testato con una varietà di linee cellulari immortalizzate e cellule primarie elencate di seguito. Se un particolare tipo di cellula o linea cellulare non è elencato ciò non significa che Magnetofection ™ non funzionerebbe. Anche per le celle elencate, alcuni reagenti non sono stati finora testati, come indicato da “nd” (non determinato).

Il reagente CombiMAG può essere combinato con qualsiasi reagente di trasfezione policationico e lipidico, e anche con vettori adenovirali e retrovirali. In alcuni casi, nelle note a piè di pagina si fa riferimento a combinazioni di grande successo con reagenti disponibili in commercio che sono stati testati finora.

Tipo di acido nucleico/virus PolyMAG CombiMAG
DNA plasmidico
Oligonucleotidi antisenso
siRNA
adenovirus nd
retrovirus nd

Qiagen

Effetti (Qiagen)

Effetti + CombiMAG

Effetti + CombiMAG

Le cellule endoteliali primarie della vena ombelicale umana posizionate sulla piastra MagnetoFACTOR sono state incubate per 15 minuti con un oligonucleotide antisenso marcato con fluorescenza Cy3 complessato con Effectene™ (Qiagen; a sinistra) o Effectene™ + CombiMAG (a destra).

(Dati gentilmente forniti da F. Kroetz. Università Ludwig-Maximilians di Monaco di Baviera)

cellule aderenti Ad
Linea cellulare Tipo di cella fonte PolyMAG CombiMAG * Numero di riferimento
HeLa carcinoma cervicale umano + + 9.030 , 9.024 , 9.072 , 9.012 , 9.111 , 9.003 , 9.005 , 9.016
HEK 293 rene umano + + 9.013 , 9.064 , 9.054
BHK rene criceto nd +
CHO ovarico criceto + + 9036 , 9002 , 9005 , 9006
NIH 3T3 fibroblasti topo + + 9.003 , 9.072 , 9.091 , 9.002 , 9.005 , 9.004
16HB140 epitelio delle vie aeree umano + nd 9.010
EJ28 cancro alla vescica umano + nd
HBL-100 Seno umano nd +
MCF7 adenocarcinoma mammario umano + + 9.014 , 9.040 , 9.041 , 9.115
MCS7 adenocarcinoma mammario umano + nd
HCT 116 adenocarcinoma del colon umano nd +
U373 astrocitoma umano + nd 9.056
U87 glioblastoma umano + nd 9.056
U251 glioblastoma umano + nd 9.056
T98G glioblastoma umano + nd 9.056
YK6-1 glioblastoma umano + nd 9.056
YH-13 glioblastoma umano + nd 9.056
A549 epiteliale basale alveolare umano + + 9.075 , 9.101
A172 glioblastoma umano + nd 9.056 , 9.074
LN229 glioblastoma umano + + 9.074
LN18 glioblastoma umano + + 9.074
SW480 adenocarcinoma del colon umano nd +
LoVo adenocarcinoma del colon umano nd +
HCT15 adenocarcinoma del colon umano nd +
CEMx174 linfociti T/B ibridi umano nd + 9.060
CHO ovarico umano + +
A431 carcinoma epidermoide umano nd +
HT-1080 fibrosarcoma umano + nd
HFF fibroblasti del prepuzio umano + +
epatite G2 carcinoma epatocellulare umano + + 9.012 , 9.048
HaCat cheratinociti umano nd +
293 T rene umano + + 9.030
293 T-17 rene umano nd + 9.030
SK-MES-1 carcinoma polmonare umano + nd
MRC 5 polmone, embrionale umano + +
MeWo melanoma umano nd +
NYGM glioblastoma cerebrale umano nd + 9.056
SK-MEL-28 melanoma umano nd +
eurodeputato epiteliale di mammifero umano nd + 9.047 il più comune
MOLT-4 Leucemia linfoblastica acuta umano nd + 9.044
SHSY-5Y neuroblastoma umano nd + 9.111 , 9.050
SV40 fibroblasti trasformati umano + nd 9.027 il più comune
A549 Carcinoma polmonare non a piccole cellule umano nd + 9.057 , 9.101
SaOS-2 sarcoma osteo umano nd +
BTK-143 sarcoma osteo umano nd +
BEAS-2B cellule epiteliali polmonari umano + nd 9.012
181RDB pancreatico umano nd +
HN12 Carcinoma della testa e del collo umano nd + 9.028
PC-3 carcinoma della prostata umano nd +
H9 linfoblastoide umano nd + 9.077
H295R carcinoma corticosurrenale umano nd + 9.058 , 9.059 , 9.037
HOS osteosarcoma umano nd + 9.077
HSG ghiandola salivare, sottomandibolare umano nd +
lui99 cancro ai polmoni umano + + 9.100
HMEC-1 endoteliale microvascolare umano + nd 9.038 , 9.092
NCI-H441 adenocarcinoma polmonare epiteliale umano + + 9.073
NCI-H292 carcinoma mucoepidermoide umano + nd 9.065 , 9.095 , 9.112 ,
NCI-H82 cancro del polmone a piccole cellule umano + nd
SK-N-BE2 neuroblastoma umano + nd 9.031 il più comune
MDAMB231 adenocarcinoma mammario umano + nd 9.035
ECV-304 carcinoma della vescica urinaria umano nd +
11.5dpcXY espianti di gonadi topo nd + 9.109
Cal27 carcinoma adenosquamoso orale topo nd + 9.028
CT-26 carcinoma del colon topo + nd 9.003 , 9.005
C127 tumore mammario murino topo nd + 9.042
F9 carcinoma embrionale topo + nd
L929 fibroblasti, tessuto connettivo topo + nd 9.016 il più comune
MEF fibroblasti topo + nd 9.039 , 9.098
HT-22 neuroblasti ippocampali topo nd +
mIEnd Linfonodo mesenterico topo nd + 9.085
mIC- (cl2) intestino topo nd +
B16F10 melanoma topo + nd 9.076 , 9.005
N2a neuroblastoma topo + nd 9.063 , 9.086
NS20Y neuroblastoma topo nd +
bTC-tet linea di cellule B topo + + 9.020
Hepa1c1c7 epatoma murino topo + nd 9.084
SVEC linea cellulare murina topo nd + 9.028
OP9 stromale derivato dal midollo osseo topo nd + 9.047 il più comune
SM 10 trofoblasto topo nd +
STC-1 cellule I enteroendocrine topo + + 9.033
A7r5 muscolatura liscia aortica ratto nd + 9.094
PC12 feocromocitoma surrenale ratto + nd
PC6-3 linea cellulare figlia di PC12 ratto + nd
C6 glioma ratto nd +
H4IIE epatoma ratto nd + 9.062
L6 cellula muscolare scheletrica ratto + nd
RIE1-α5 intestinale ratto + nd 9.088
HNSCC Carcinoma della testa e del collo ratto nd + 9015 , 9028 , 9051
camper vena ratto + nd
COS-7 rene scimmia + + 9.030
CV-1 rene scimmia + nd
COS-1 rene scimmia nd +
vero rene scimmia nd + 9.045 , 9.046 , 9.016
B11 (UV) ovaio resistente criceto nd + 9.028
V79 fibroblasti polmonari criceto + nd
PT-11 rene bovino nd +
MDCK rene canino + nd 9.067
CRFK rene gatto nd +
VSa13 osso (simile ai condrociti) pesce + nd
AM-C6SC8 rene maiale nd +
fibroblasti xenopo + nd
EMC mesenteliale. Cellule (epicard) nd +
Cellule di sospensione
Linea cellulare Tipo di cella fonte PolyMAG CombiMAG * Numero di riferimento
THP-1 leucemia mieloide acuta umano nd +
Jurkat linfoma acuto a cellule T umano nd + 9.044 , 9.073
BL-41 Linfoma a cellule B umano + nd
K562 linfoma mieloide cronico umano nd + 9,002
P815 mastocitoma topo nd +
U937 linfoma istiocitario umano + +
cellule primarie
Tipo di cella fonte PolyMAG CombiMAG * Numero di riferimento
cellule endoteliali (sangue cordonale) umano + nd 9.054
cellule endoteliali aortiche umano + nd 9028 , 9032
epiteliale (HUVEC) umano + nd 9.029 , 9.034 , 9.092 , 9.113 , 9.114 , 9.003 , 9.007 , 9.008 , 9.021 , 9.029 , 9.034 , 9.005 , 9.004
fibroblasti umano + +
fibroblasti, diploide umano + +
ghiandola gastrica umano + +
cellule gastriche aderenti umano nd + 9.069
miofibroblasti gastrici umano + nd 9.043
glioma umano + nd
cheratinociti umano nd + 9.005
LNCaP umano nd +
linfociti umano + + 9005 , 9102
epitelio di mammifero umano nd +
epitelio delle vie aeree nasali umano + + 9.005
tumore al pancreas umano + nd
linfociti del sangue periferico umano + + 9005 , 9102
cellule stromali (endometrio) umano nd +
cellule T umano + nd 9.102 , 9.089
condrociti umano + + 9.107 , 9.022 , 9.024
cellule trofoblastiche umano nd +
fibroblasti (MEF) topo nd + 9.018 , 9.053
neuroni topo + + 9.071
neuroni afferenti vagali topo nd + 9.071
cellule gastriche aderenti topo nd + 9.061° più comune
linfociti del sangue periferico topo nd +
mioblasti topo nd + 9.053
cellule T topo + nd
neuroni dell’ippocampo ratto + + 9.017 , 9.070 , 9.050 , 9.052 , 9.093 , 9.090 , 9.105 , 9.104
cellule muscolari lisce aortiche ratto nd + 9.094
cardiomiociti ratto nd + 9.055
epatociti ratto nd +
epiteliale (HUVEC) ratto + + 9028 , 9054
neuroni corticali ratto nd + 9.052 , 9.063 , 9.097
cellule endoteliali aortiche bovino + nd
muscolo liscio dell’arteria carotide bovino + nd
cellule cromaffini bovino nd +
lente bovino + nd
epitelio delle vie aeree maiale nd +
condrociti maiale + +
fibrocondrociti maiale + +
pSM, muscolatura liscia maiale nd +

* Corrisponde alla trasfettazione riuscita di CombiMAG in associazione con diversi reagenti di trasfezione commerciali come FuGENE ™ (Roche), Lipofectamine ™, METAFECTENE ™ (Biontex GmbH) e DMRIE-C ™ (Invitrogen); adenovirus; Effetti ™ (Qiagen)

nd = non determinato

Kit disponibili

Codice prodotto Descrizione Dimensione
(sufficiente per n DNAg DNA)
Numero di
trasfezioni
(formato a 96 pozzetti)
Prezzo
Euro / US $
9001 PolyMAG-100 100 1000 95/125
9002 PolyMAG-500 500 5000 365/480
9003 PolyMAG-1000 1000 10000 665/875
9004 CombiMAG-100 100 500 50/65
9005 CombiMAG-500 500 2500 180/235
9006 CombiMAG-1000 1000 5000 350/460
9007 MagnetoFACTOR piastra 96 350/460
9009 MagnetoFACTOR piastra 24 350/460
9008-96 OFFERTA SPECIALE:
MagnetoFACTOR-96 piastra
PolyMAG-200
CombiMAG-200
200
200
2000
1000
350/460
9008-24 OFFERTA SPECIALE:
MagnetoFACTOR-24 piastra
PolyMAG-200
CombiMAG-200
200
200
2000
1000
350/460
Conservazione:
Tutti i componenti del kit Magnetofection™ devono essere conservati a temperatura ambiente (20-25°C). Dopo il primo utilizzo conservare il kit a +4°C. Non congelare le nanoparticelle magnetiche
Non aggiungere nulla alla soluzione stock di nanoparticelle magnetiche
Condizioni di spedizione: Temperatur ambiente

Piastra MagnetoFACTOR-96

Piastra MagnetoFACTOR-96

MagnetoFACTOR-24 piastra

MagnetoFACTOR-24 piastra

La piastra MagnetoFACTOR-96 , la sua speciale geometria, non solo produce forti campi magnetici sotto ciascun pozzetto delle piastre a 96 pozzetti, ma è applicabile anche ad altri formati di piastre fiasche di coltura T-75, piastre a 6 e 12 pozzetti. Nei formati di piastre più grandi, la piastra MagnetoFACTOR produrrà uno schema di densità più alte e più basse di cellule trasfettate in base alla geometria delle linee del campo magnetico. La piastra MagnetoFACTOR-24 è appositamente progettata per il formato a 24 pozzetti.

Le piastre MagnetoFACTOR sono compatibili con le piastre a pozzetti della maggior parte dei produttori.

OFFERTA SPECIALE

Come offerta di lancio riceverai una fiala ciascuno di PolyMAG e CombiMAG sufficiente per 200 ofg di DNA ciascuno in omaggio in combinazione con l’acquisto della piastra MagnetoFACTOR. Ciò ti consentirà di ottimizzare la tua Magnetofection ™ in un massimo di 3000 esperimenti di trasfezione (formato a 96 pozzetti).

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

page1image31149008

MagnetofectionTM

the new gene transfection technology

MagnetofectionTM is a novel, simple and highly efficient method to transfect cells in culture.

Table of contents

page2image3966080page2image3966272

Technology

2

1.1. Description 2 1.2. MagnetofectionTM Reagents 3 1.3. Nucleic Acids Dose Response and Transfection Kinetic 3 1.4. Application 4

2.1. MagnetoFACTOR plates 11

3.1. Kits Contents 12 3.2. Contact 12

4.1. General Considerations 13 4.2. General Protocol 13

4.3. Magnetofection in 6-, 12-, 24- or 96-well Plate Formats, T-75 Culture Flasks 14 4.4. PolyMAG 16

4.5. CombiMAG 17 4.5.1. CombiMAG – Example Protocol for Fugene (Roche) 18 4.5.2. CombiMAG – Example Protocols for other Cationic Lipid Reagents 19

  1. 4.6.  MagnetofectionTM – Suspension Cells 19
  2. 4.7.  MagnetofectionTM – siRNA 20 4.7.1. siRNA – PolyMAG Protocol 21 4.7.2. siRNA – CombiMAG Protocol 22
  3. 4.8.  MagnetofectionTM – Viruses – CombiMAG Protocol 24
  4. 4.9.  High Throughput Optimizations 26

4.10. MagnetofectionTM – Optimization Protocol in 96-well Format 26 4.11. Troubleshooting 28

page2image3966464

Utensils for MagnetofectionTM

11

page2image3966656

Avalaible Kits

12

page2image3966848

Protocols

13

page2image3967040

References

30

Technology

page3image3268096page3image3267520

1.1. Description

MagnetofectionTM is a novel, simple and highly efficient method to transfect cells in culture. It exploits magnetic force exerted upon gene vectors associated with magnetic particles to draw the vectors towards, possibly even into, the target cells. In this manner, the full vector dose applied gets concentrated on the cells within a few minutes so that 100% of the cells get in contact with a significant vector dose. This has several important consequences:

• Greatly improved transfection rates in terms of percentage of cells transfected compared to standard transfection.

• Up to several thousand fold increased levels of transgene expression compared to standard transfections upon short-term incubation.

• High transfection rates and transgene expression levels are achievable with extremely low vector doses, which allows to save expensive transfection reagents.

• Extremely short process time. A few minutes of incubation of cells with gene vectors are sufficient to generate high transfection efficiency, compared to several hours with standard procedures.

page3image82759744page3image4174016

chemicell GmbH • MagnetofectionTM 2.4 2

page3image4175168

Technology

page4image4174976page4image4174784

1.2. MagnetofectionTM Reagents

page4image4174592

As the manufacturer of the MagnetofectionTM technology, chemicell offers two types of ready-to-use MagnetofectionTM reagents.

PolyMAG is a universally applicable magnetic particle preparation for high efficiency nucleic acid delivery. It is mixed in a one-step procedure with the nucleic acid to be transfected and has been used successfully with plasmid DNA, antisense oligonucleotides and siRNAs.

CombiMAG is a magnetic particle preparation designed to be combined with any commercially available transfection reagent such as polycations and lipids and can be associated with plasmid DNA, antisense oligonucleotides, siRNAs or viruses.
It allows you to create your own magnetic gene vector based on your favourite transfection reagent.

page4image4177664

Purchaser Notification

The MagnetofectionTM reagents and all of its components are developed, designed, intended and sold for research use only. They are not to be used for human diagnostic or any drug intended.

MagnetofectionTM are registered trademark

page4image4176512

1.3. Nuclec Acids Dose Response and Transfection Kinetics

page4image31959328 page4image31960560 page4image31960336

300

200

100

0
0 50 100 150 200 250

process time (min)

Transfection kinetics: NIH 3T3 cells were incubated with GenePorterTM (Gene Therapy Systems) ± CombiMAG with and without positioning on the Magneto- FACTOR plate for the indicated time spans. Luciferase expression was assayed after 24 hours.

Dose response profile in NIH 3T3 cells using LipofectamineTM (Invitrogen) ± CombiMAG with and without positioning on the MagnetoFACTOR plate for 15 min. Luciferase expression was assayed after 24 hours.

paramagnetic vehicle plus magnetic field

paramagnetic vehicle no magnetic field

standard gene transfer

200

150

100

50

0

0 0.05
dose (μg DNA)

0.1 0.15

page4image4121792

chemicell GmbH • MagnetofectionTM 2.4

3

page4image4107520

response (expression level)

response (expression level)

Technology

page5image4087296page5image4086528

1.4. Application

MagnetofectionTM is generally applicable for adherent cells and has been tested with a variety of immortalized cell lines and primary cells listed below. If a particular cell type or cell line is not listed this does not mean that MagnetofectionTM would not work. Also for the cells listed, some reagents have not been tested so far, as indicated by “n.d.” (not determined).

The CombiMAG reagent can be combined with any polycationic and lipidic transfection reagent, and also with adenoviral and retroviral vectors. In some cases, references are made in the footnotes to very successful combinations with commercially available reagents that have been tested so far.

Type of nucleic acid / virus

PolyMAG

CombiMAG

Plasmid DNA

Antisense Oligonucleotides

siRNA

Adenovirus

n.d.

Retrovirus

n.d.

page5image82757040 page5image82757248

Primary human umbilical vein endothelial cells positioned on the MagnetoFACTOR plate were incubated for 15 min with a Cy3 fluorescence- labeled antisense-oligonucleotide complexed with EffecteneTM (Qiagen; left) or EffecteneTM + CombiMAG (right).

(Data kindly provided by F. Kroetz. Ludwig-Maximilians University Munich)

page5image4083840

chemicell GmbH • MagnetofectionTM 2.4 4

page5image4084416

Technology

page6image4188288

Adherent Cells

Cell line

Cell line

Source

PolyMAG

CombiMAG*

Ref. No.

HeLa

cervix carcinoma

human

+

+

9.030, 9.024, 9.072, 9.012, 9.111, 9.003, 9.005, 9.016,

HEK 293

kidney

human

+

+

9.013, 9.064, 9.054,

BHK

kidney

hamster

n.d.

+

CHO

ovarian

hamster

+

+

9.036, 9.002, 9.005, 9.006,

NIH 3T3

fibroblasts

mouse

+

+

9.003, 9.072, 9.091, 9.002, 9.005, 9.004,

16HB140

airway epithelium

human

+

n.d.

9.010,

EJ28

bladder cancer

human

+

n.d.

HBL-100

breast

human

n.d.

+

MCF7

breast adenocarcinoma

human

+

+

9.014, 9.040, 9.041, 9.115,

MCS7

breast adenocarcinoma

human

+

n.d.

HCT 116

colon adenocarcinoma

human

n.d.

+

U373

astrocytoma

human

n.d.

+

9.056,

U87

glioblastoma

human

n.d.

+

9.056,

U251

glioblastoma

human

n.d.

+

9.056,

T98G

glioblastoma

human

n.d.

+

9.056,

YK6-1

glioblastoma

human

n.d.

+

9.056,

YH-13

glioblastoma

human

n.d.

+

9.056,

A549

alveolar basal epithelial

human

+

+

9.075, 9.101,

A172

glioblastoma

human

n.d.

+

9.056, 9.074,

LN229

glioblastoma

human

+

+

9.074,

LN18

glioblastoma

human

+

+

9.074,

SW480

colon adenocarcinoma

human

n.d.

+

LoVo

colon adenocarcinoma

human

n.d.

+

HCT15

colon adenocarcinoma

human

n.d.

+

CEMx174

hybrid T/B-lymphocytes

human

n.d.

+

9.060,

CHO

ovarian

human

+

+

page6image3960448

chemicell GmbH • MagnetofectionTM 2.4 5

page6image3960640

Technology

page7image4123136

A431

epidermoid carcinoma

human

n.d.

+

HT-1080

fibrosarcoma

human

+

n.d.

HFF

foreskin fibroblast

human

+

+

Hep G2

hepatocellular carcinoma

human

+

+

9.012, 9.048,

HaCat

keratinocytes

human

n.d.

+

293 T

kidney

human

+

+

9.030,

293 T-17

kidney

human

n.d.

+

9.030,

SK-MES-1

lung carcinoma

human

+

n.d.

MRC 5

lung, embryonic

human

+

+

MeWo

melanoma

human

n.d.

+

NYGM

cerebral glioblastoma

human

n.d.

+

9.056,

SK-MEL-28

melanoma

human

n.d.

+

MEP

mammalian epithelial

human

n.d.

+

9.047,

MOLT-4

acute lymphoblastic leukemia

human

n.d.

+

9.044,

SHSY-5Y

neuroblastoma

human

n.d.

+

9.111, 9.050,

SV40

transformed fibroblasts

human

+

n.d.

9.027,

A549

Non-small cell lung carcinoma

human

n.d.

+

9.057, 9.101

SaOS-2

osteo sarcoma

human

n.d.

+

BTK-143

osteo sarcoma

human

n.d.

+

SaOS-2

osteo sarcoma

human

n.d.

+

BEAS-2B

lung epithelial cells

human

+

n.d.

9.012

181RDB

pancreatic

human

n.d.

+

HN12

Head, neck carcinoma

human

n.d.

+

9.028

PC-3

prostate carcinoma

human

n.d.

+

H9

lymphoblastoid

human

n.d.

+

9.077

H295R

adrenocortical carcinoma

human

n.d.

+

9.058, 9.059, 9.037

HOS

osteosarcoma

human

n.d.

+

9.077

HSG

salivary gland, submandibular.

human

n.d.

+

He99

lung cancer

human

+

+

9.100

HMEC-1 microvascular endothelial human + n.d.

9.038, 9.092

page7image3939840

chemicell GmbH • MagnetofectionTM 2.4 6

page7image3940032

Technology

page8image80123136

NCI-H441

lung adenocarcinoma epithelial

human

+

+

9.073

NCI-H292

mucoepidermoid carcinoma

human

+

n.d.

9.065, 9.095, 9.112

NCI-H82

small cell lung cancer

human

+

n.d.

SK-N-BE2

neuroblastoma

human

+

n.d.

9.031

MDAMB231

breast adenocarcinoma

human

+

n.d.

9.035

ECV-304

urinary bladder carcinoma

human

n.d.

+

11.5dpcXY

gonad explants

mouse

n.d.

+

9.109

Cal27

oral adenosquamous carcinoma

mouse

n.d.

+

9.028

CT-26

colon carcinoma

mouse

+

n.d.

9.003, 9.005

C127

murine mammary tumor

mouse

n.d.

+

9.042

F9

embryonal carcinoma

mouse

+

n.d.

L929

fibroblast, connective tissue

mouse

+

n.d.

9.016

MEF

fibroblast

mouse

+

n.d.

9.039, 9.098

HT-22

hippocampal neuroblast

mouse

n.d.

+

mIEnd

Mesenteric lymph node

mouse

n.d.

+

9.085

mIC-(cl2)

intestine

mouse

n.d.

+

B16F10

melanoma

mouse

+

n.d.

9.076, 9.005

N2a

neuroblastoma

mouse

+

n.d.

9.063, 9.086

NS20Y

neuroblastoma

mouse

n.d.

+

bTC-tet

B-cell line

mouse

+

+

9.020

Hepa1c1c7

murine hepatoma

mouse

+

n.d.

9.084

SVEC

murine cell line

mouse

n.d.

+

9.028

OP9

bone marrow-derived stromal

mouse

n.d.

+

9.047

SM 10

trophoblast

mouse

n.d.

+

STC-1

enteroendocrine I cells

mouse

+

+

9.033

A7r5

aortic smooth muscle

rat

n.d.

+

9.094

PC12

adrenal pheochromocytoma

rat

+

n.d.

PC6-3

daughter cell line of PC12

rat

+

n.d.

C6

glioma

rat

n.d.

+

page8image4186944

chemicell GmbH • MagnetofectionTM 2.4 7

page8image4187136

Technology

page9image4151296

H4IIE

hepatoma

rat

n.d.

+

9.062

L6

skeletal muscle cell

rat

+

n.d.

RIE1-α5

intestinal

rat

+

n.d.

9.088

HNSCC

Head, neck carcinoma

rat

n.d.

+

9.015, 9.028, 9.051,

RV

vein

rat

+

n.d.

COS-7

kidney

monkey

+

+

9.030

CV-1

kidney

monkey

+

n.d.

COS-1

kidney

monkey

n.d.

+

Vero

kidney

monkey

n.d.

+

9.045, 9.046, 9.016

B11

(UV) resistant ovary

hamster

n.d.

+

9.028

V79

lung fibroblasts

hamster

+

n.d.

PT-11

kidney

bovine

n.d.

+

MDCK

kidney

canine

+

n.d.

9.067

CRFK

kidney

cat

n.d.

+

VSa13

bone (chondrocyte-like)

fish

+

n.d.

AM-C6SC8

kidney

pig

n.d.

+

fibroblasts

xenopus

+

n.d.

EMC

mesenthelial. Cells (epicard)

n.d.

+

Suspension Cells

Cell line

Cell type

Source

PolyMAG

CombiMAG*

Ref. No.

THP-1

acute myeloid leukemia

human

n.d.

+

Jurkat

acute T-cell lymphoma

human

n.d.

+

9.044, 9.073

BL-41

B-cell lymphoma

human

+

n.d.

K562

chronic myeloid lymphoma

human

n.d.

+

9.002

P815

mastocytoma

mouse

n.d.

+

U937

histiocytic lymphoma

human

+

+

page9image4162688

chemicell GmbH • MagnetofectionTM 2.4 8

page9image4162880

Technology

page10image4130112

Primary Cells

Cell type

Source

PolyMAG

CombiMAG*

Ref. No.

endothelial cells (cord blood)

human

+

n.d.

9.054

aortic endothelial cells

human

+

n.d.

9.028, 9.032

epithelial (HUVEC)

human

+

+

9.029, 9.034, 9.092, 9.113,

9.114, 9.003, 9.007, 9.008, 9.021, 9.029, 9.034, 9.005, 9.004

fibroblasts

human

+

+

fibroblasts, diploid

human

+

+

gastric gland

human

+

+

adherent gastric cells

human

n.d.

+

9.069

gastric myofibroblasts

human

+

n.d.

9.043

glioma

human

+

n.d.

keratinocytes

human

n.d.

+

9.005

LNCaP

human

n.d.

+

lymphocytes

human

+

+

9.005, 9.102

mammal epithelium

human

n.d.

+

nasal airway epithelium

human

+

+

9.005

pancreatic tumor

human

+

n.d.

peripheral blood lymphocytes

human

+

+

9.005, 9.102

stroma cells (endometrium)

human

n.d.

+

T-cells

human

+

+

9.102, 9.089

chondrocytes

human

+

+

9.107, 9.022, 9.024

trophoblastic cells

human

n.d.

+

fibroblasts (MEF)

mouse

n.d.

+

9.018, 9.053

neurons

mouse

+

+

9.071

vagal afferent neurons

mouse

n.d.

+

9.071

adherent gastric cells

mouse

n.d.

+

9.061

peripheral blood lymphocytes

mouse

n.d.

+

myoblasts

mouse

n.d.

+

9.053

T-cells

mouse

+

n.d.

page10image4138944

chemicell GmbH • MagnetofectionTM 2.4 9

page10image4139136

Technology

page11image4094016

hippocampal neurons

rat

+

+

9.017, 9.070, 9.050, 9.052, 9.093, 9.090, 9.105, 9.104

aortic smooth muscle cells

rat

n.d.

+

9.094

cardiomyocyte

rat

n.d.

+

9.055

hepatocytes

rat

n.d.

+

epithelial (HUVEC)

rat

+

+

9.028, 9.054

cortical neurons

rat

n.d.

+

9.052, 9.063, 9.097

aortic endothelial cells

bovine

+

n.d.

carotid artery smooth muscle

bovine

+

n.d.

chromaffine cells

bovine

n.d.

+

lens

bovine

+

n.d.

airway epithelium

pig

n.d.

+

chondrocytes

pig

+

+

fibrochondrocytes

pig

+

+

pSM, smooth muscle

pig

n.d.

+

* Corresponds to successfully transfected by CombiMAG in association with different commercial transfection reagents such as FuGENETM (Roche), LipofectamineTM, METAFECTENETM (Biontex GmbH) and DMRIE-CTM (Invitrogen); adenovirus; EffecteneTM (Qiagen)

n.d. = not determined

page11image4099456

chemicell GmbH • MagnetofectionTM 2.4 10

page11image4099648

Utensils for MagnetofectionTM

page12image3258432page12image3258624

2.1. MagnetoFACTOR plates

Apart from suitable magnetic nanoparticles, MagnetofectionTM requires appropriate magnetic fields. These are provided by the MagnetoFACTOR plate, especially designed for MagnetofectionTM.

The MagnetoFACTOR-96 plate its special geometry not only produces strong magnetic fields under each well of 96-well plates but is also applicable for other plate formats T-75 culture flasks, 6- and 12-well plates. In the larger plate formats, the MagnetoFACTOR plate will produce a pattern of higher and lower densities of transfected cells according to the geometry of the magnetic field lines. The MagnetoFACTOR-24 plate is special designed for the 24-well format.

The MagnetoFACTOR plates are compatible for well plates of the most manufacturer.

MagnetoFACTOR-96 plate MagnetoFACTOR-24 plate

SPECIAL OFFER

As an introductory offer you will receive one vial each of PolyMAG and CombiMAG sufficient for 200 μg of DNA each for free in combination with the purchase of the MagnetoFACTOR plate. This will enable you to optimize your MagnetofectionTM in up to 3000 transfection experiments (96-well format).

@ info@chemicell.com

page12image3258816 page12image3259008 page12image81882704 page12image81883120page12image81883328 page12image81883536page12image81883744 page12image81883952page12image81884160 page12image3259200page12image3259392

chemicell GmbH • MagnetofectionTM 2.4 11

page12image3259584

Avalaible Kits 3.1. Kits Contents

   9001
   9002
   9003
   9004
   9005
   9006

95 / 125 365 / 480 665 / 875

50 / 65 180 / 235 350 / 460

page13image4071296page13image4071488 page13image4071680 page13image4071872 page13image4072064 page13image4072256 page13image4072640page13image4072832page13image4073024

Product Number

page13image4073216 page13image4073408 page13image4073600page13image4073792page13image4073984page13image4074176 page13image4074368

350 / 460

350 / 460

350 / 460

9007

9009

9008-96

Description

PolyMAG-100

PolyMAG-500 PolyMAG-1000

CombiMAG-100

CombiMAG-500 CombiMAG-1000

MagnetoFACTOR-96 plate

MagnetoFACTOR-24 plate

SPECIAL OFFER:

MagnetoFACTOR-96 plate PolyMAG-200 CombiMAG-200

9008-24

Storage:

350 / 460

SPECIAL OFFER:

MagnetoFACTOR-24 plate PolyMAG-200 CombiMAG-200

Size

(sufficient for n μg DNA)

100

500 1000

100

500 1000

page13image4076864

All components of the MagnetofectionTM kit should be stored at room temperatur (20-25°C). After first use store the kit at +4°C.

• Do not freeze the magnetic nanoparticles
• Do not add anything to the stock solution of magnetic nanoparticles • Shipping Conditions: Room Temperatur

200 200

200 200

Number of Transfection (96-well format)

1000

5000 10000

500 2500 5000

Price

EUR / USD

page13image4077056

2000 1000

2000 1000

page13image4077248

3.2. Contact

chemicell GmbH

Eresburgstrasse 22-23 12103 Berlin
Germany
Tel.: +49-30-2141481
Fax.: +49-30-21913737 e-mail: info@chemicell.com Internet: www.chemicell.com

@ info@chemicell.com

page13image4077440 page13image4077632

chemicell GmbH • MagnetofectionTM 2.4

12

page13image4077824

Protocols

page14image3185984page14image4063232

4.1. General Considerations

The instructions given below represent sample protocols that were applied successfully with a variety of cell lines. Please note that optimal conditions do vary from cell line to cell line. Therefore, the amount of DNA or RNA used and the ratios of the individual components may have to be adjusted to achieve best results. The following recommendations can be used as guidelines to achieve good transfection with minimal incubation times.

4.2. General Protocol

Adherent cells are seeded such that they reach 60-80% confluency at the time of MagnetofectionTM.

For suspension cells, use the specific protocol given in section 4.6. Immediately preceding transfection, the medium can be replaced with fresh medium (optionally without serum) if necessary.

The suggested cell number for adherent and suspension cells is given below.

Recommended DNA amount, PolyMAG volume and transfection volume.

page14image4063424

Tissue Culture Dishes

Cell Number per well

DNA Quantity (μg)

PolyMAG or CombiMAG (μL)

Transfection Volume*

96-well

0.5 – 2 x 104

0.1 – 0.5

0.1 – 0.5

200 μL

24-well

0.5 – 1 x 105

0.5 – 2

0.5 – 2

500 μL

12-well

1 – 2 x 105

2-4

2-4

1 mL

6-well

1 – 4 x 105

2-6

2-6

2 mL

60 mm dish

5 – 10 x 105

6-8

6-8

5 mL

90-100 mm dish

1 – 2 x 106

8 – 12

8 – 12

10 mL

T-75 flask

2 – 5 x 106

15 – 25

15 – 25

15 – 20 mL

*Total Transfection volume = culture medium + PolyMAG or CombiMAG complex

page14image4066688

chemicell GmbH • MagnetofectionTM 2.4 13

page14image4066880

Protocols

page15image3152640

The following protocols (section 4.4, 4.5, 4.5.1, 4.5.2 and 4.6) can be used to produce stably transduced cells except that 48 hours post transfection. Cells are transferred to fresh medium containing the appropriate antibiotics for selection. It is important to wait at least 48 hours before exposing the transduced cells to selection media.

Vectors are prepared in medium without serum and supplement or in physiological saline, because serum may interfere with transfection complex assembly. The serum and supplement-free transfection complex is added to the cells that are covered with complete medium. Therefore, the addition of the transfection complex will result in the dilution of supplements such as serum, antibiotics or other additives of your standard culture medium. Although a medium changes after MagnetofectionTM is not required for most cell types, it may be necessary for cells that are sensitive to serum/supplement concentration. Alternatively, the cells may be kept in serum-free medium during MagnetofectionTM. In this case, a medium change will be required after MagnetofectionTM.

4.3. MagnetofectionTM in 6-, 12- , 24- or 96-well Plate Formats, T-75 Culture Flasks

As a rule of thumb, a DNA amount of 50 ng to 300 ng per square centimeter culture dish will yield good results. However, it is emphasized that every cell line requires optimization with respect to DNA amount and vector formulation.

The easiest way to generate the complexes is to provide the required amount of magnetic particles in a microcentrifuge tube, add the required amount of DNA which has been diluted with serum-free medium (e.g. DMEM). After 15 min incubation, add the magnetic particles / DNA complex to the cells. Position the 6-well culture plate on the MagnetoFACTOR plate for up to 10-20 min, subsequent perform a medium change (optional).

6-well culture dish:

A useful DNA amount for the 6-well format is 2 μg up to 6 μg, whereas the ratio of magnetic particles / DNA is 1:1. To 1.8 mL cells per well add 200 μL magnetic particles / DNA complexes.

12-well culture dish:

A useful DNA amount for the 12-well format is 2 μg up to 4 μg, whereas the ratio of magnetic particles / DNA is 1:1. To 0.8 mL cells per well add 200 μL magnetic particles / DNA complexes.

page15image3152832 page15image3153024 page15image3153216page15image3153408

chemicell GmbH • MagnetofectionTM 2.4 14

page15image3153600

Protocols 24-well culture dish:

A useful DNA amount for the 24-well format is 0.5 μg up to 2 μg, whereas the ratio of magnetic particles / DNA is 1:1. To 0.3 mL cells per well add 200 μL magnetic particles / DNA complexes.

96-well culture dish:

A useful DNA amount for the 96-well format is 0.1 μg up to 0.5 μg, whereas the ratio of magnetic particles / DNA is 1:1. To 0.15 mL cells per well add 50 μL magnetic particles / DNA complexes.

T-75 culture flask:

A useful DNA amount for the T-75 culture flask format is 15 μg up to 25 μg, whereas the ratio of magnetic particles / DNA is 1:1. To 14 mL (19 mL) cells add 1 mL magnetic particles / DNA complexes.

page16image3252288 page16image3252480 page16image3252672 page16image3252864page16image3253056

chemicell GmbH • MagnetofectionTM 2.4 15

page16image3253248

Protocols

page17image3248640page17image3248832

4.4. PolyMAG

Plate the adherent cells the day before transfection or suspension cells just before transfection in the appropriate tissue culture dish and volume of culture medium as recommended in table section 4.2.

The protocol is as simple as follows: Use 1 μL of PolyMAG per μg of DNA.

1. Add the required amount of PolyMAG (according to the DNA amount) to a microcentrifuge tube or to a U-bottom well of 96-well plate. If required and for amount less than 1 μL PolyMAG in your protocol, predilute PolyMAG with deionized water.

Note: Vortex the PolyMAG before used.
2. Dilute required amount of DNA to 200 μL with serum- and supplement-free

medium (such as DMEM).
3. Add the 200 μL DNA solution to PolyMAG and mix immediately by vigorous

pipetting.

4. After 15 minutes of incubation, add the 200 μL of complexes to the cells.

Note: The total transfection volumes per well (culture medium + PolyMAG complex) are suggested in the table above.

5. Place the cell culture plate upon the MagnetoFACTOR plate and incubate under standard cell conditions for 10 to 20 minutes.

6. Remove the MagnetoFACTOR plate.
6a.Optionally perform a medium change.
7. Cultivate cells under standard conditions until evaluation of transgene expression.

STANDARD TRANSFECTION MAGNETOFECTIONTM

Confluent primary human Keratinocytes transfected with PolyMAG
chemicell GmbH • MagnetofectionTM 2.4 16

page17image3249024 page17image81877504page17image81877088 page17image3249216 page17image3249408

Protocols

page18image3247680page18image3247872

4.5. CombiMAG

A number of suppliers sell efficient transfection reagents. All of these can be made a magnetofectin by simple mixing with CombiMAG, usually resulting in strong improvements of these reagents efficiencies.

There are two strategies of using CombiMAG:

• One is to prepare a standard DNA complex with a commercial transfection reagent according to the instructions of the manufacturer, followed by mixing with CombiMAG.

• The second strategy is to first mix DNA and CombiMAG followed by mixing with the transfection reagent.

Also in this case, the instructions of the manufacturer are used with the only exception that instead of DNA alone, a mixture of DNA and CombiMAG is added to the transfection reagent.

Depending on the transfection reagent, the mixing order of components may influence the final transfection efficiency. It is recommended to use 1 – 2 μL of CombiMAG per μg of DNA in initial experiments.

However, depending on the cell line to be transfected and the commercial transfection reagent used, the optimal composition may be found above or below this ratio.

Note: If required in your setup, predilute CombiMAG with ddwater.

page18image3248064 page18image81876880page18image81876672

CT-26 colon carcinoma cells were transfected for 15 min with a GFP reporter plasmid complexed with DMRIE-C (Invitrogen)

CT-26 colon carcinoma cells were transfected for 15 min with a GFP reporter plasmid complexed with DMRIE-C (Invitrogen) + CombiMAG on a magnetic plate

(Data kindly provided by Ch. Plank. Technical University Munich)

page18image3248256

chemicell GmbH • MagnetofectionTM 2.4 17

page18image3248448

Protocols

page19image3185600page19image3193856

4.5.1 CombiMAG – Example Protocol for Fugene (Roche)

Plate 0.5 x 105 adherent cells per well the day before transfection or suspension cells just before transfection in a 24-well culture plate.

1.

2.

3.

4.

5.

6.

7.

Add 2.4 μL of Fugene to 97.6 μL serum- and supplement-free medium (such as DMEM) and vortex vigorously for 2 seconds.

Dilute 0.8 μg of DNA to 100 μL with serum- and supplement-free medium (such as DMEM).

Mix the DNA solution with the Fugene dilution by pipetting and incubate for 15 minutes at room temperature.

Add the resulting 200 μL of DNA complex to 1.6 μL of CombiMAG and mix immediately by vigorous pipetting. Vortex the CombiMAG before used.

After further 15 minutes of incubation add the DNA / Fugene / CombiMAG complex to the cells.

Place the cell culture plate upon the MagnetoFACTOR plate and incubate under standard cell culture conditions for 10 to 20 minutes.

Remove the magnetic plate and cultivate cells under standard conditions until evaluation of transgene expression.

page19image3244032

8. Optionally perform a medium change.
9. Depending on the commercial transfection reagent used, this protocol may have

to be adapted.

Note: If required in your setup, predilute CombiMAG with ddwater.

page19image3244224 page19image81873968page19image81876464

Human Keratinocytes

Porcine Chondrocytes

Transfection of primary cells
Vector FugeneTM (Roche) +CombiMAG. 15 min transfection on MagnetoFACTOR plate (Data kindly provided by Ch. Plank. Technical University Munich)

page19image3244416

chemicell GmbH • MagnetofectionTM 2.4 18

page19image3244608

Protocols

page20image3389120page20image3389312

4.5.2 CombiMAG – Example Protocols for other Cationic Lipid Reagents

The same steps as for Fugene are carried out. The primary DNA complex is prepared similar to the instructions of the manufacturer.

For example, in step 1, 3.2 μL of Lipofectamine + 96.8 μL medium or 4.0 μL GenePorter + 96 μL medium are used instead of Fugene. The rest of the protocol stays the same.

However, the user is reminded that the alternative mixing order (first mixing DNA and CombiMAG followed by mixing with lipid) may be advantageous.

Similarly, the polycationic reagents ExGen500 or Superfect (Qiagen) can be used instead of the lipids.

4.6. MagnetofectionTM – Suspension Cells

  1. The composition and preparation of PolyMAG / DNA or CombiMAG / transfection

    reagent are performed exactly as described above (section 4.4 and 4.5).

  2. While PolyMAG / DNA or CombiMAG / transfection reagent incubate for complex formulation, dilute the cells to be transfected to 5 x 105 – 1 x 106 / mL in medium (with or without serum- or supplement; depending on cell type and sensitivity of cells towards serum-free conditions) and perform one of the following three options to sediment the cells at the bottom of the culture dish in order to promote the contact with the magnetic nanoparticles.

page20image3389504

Option 1:

Option 2:

Option 3:

Seed the cells on polylysine-coated plates and use the protocol for adherent cells.

Briefly, centrifuge the cells (2 minutes) to pellet them and use the protocol for adherent cells.

Mix cell suspension with 30 μL of CombiMAG reagent per mL of cell suspension.

– Incubate for 10 – 15 minutes.

– Distribute cells to your tissue culture dish placed upon the magnetic plate (volume of culture medium containing cells depends on the culture dish size; see suggested transfection volume in table section 4.2.

– Incubate for 15 minutes

page20image3389696

chemicell GmbH • MagnetofectionTM 2.4 19

page20image3390080

Protocols

page21image3192896

3. Add the resulting complex of PolyMAG / DNA or CombiMAG / transfection reagent to the cells while keeping the cell culture plate on the MagnetoFACTOR plate.

  1. Continue to incubate for 15 minutes.
  2. Carefully remove the medium supernatant from the cells and replace with fresh complete medium while the culture plate remains positioned on the MagnetoFACTOR plate.
    Be careful not to aspirate the magnetically sedimented cells.
  3. Remove culture plate from MagnetoFACTOR plate.
  4. Continue to cultivate cells as desired until evaluation of transgene expression.

4.7. MagnetofectionTM – siRNA

RNA interference is a powerful technique to shut down gene expression in cells and organisms. This silencing effect constitutes a very helpful tool to study gene function and is a promising approach for new therapeutic treatments. Short RNA duplexes (siRNA: small interfering RNA, shRNA: small hairpin RNA and dsRNA: double strand RNA) are extremely selective by interacting and inducing the degradation of their specific mRNA targets and thereby inhibit the resulting protein production.

PolyMAG introduces the siRNA duplexes in a variety of cells with a very high efficiency leading to exceptional knockdown effects with low doses of siRNA.

The protocol is very straightforward. Please refer to the tables below for specific amount of the respective compounds and transfection volume.

For instance use 2 μL of PolyMAG for 20 nM siRNA final concentration in a 6-well plate (transfection volume 2 mL)

page21image3193088page21image3193280page21image3193472

chemicell GmbH • MagnetofectionTM 2.4 20

page21image3193664

Protocols
Example dilution procedure of siRNA (1 μM stock solution*) and PolyMAG / CombiMAG :

page22image3189632

Culture vessel

96-well

24-well

12-well

6-well

Dilution serum-free medium

100 μL

100 μL

100 μL

200 μL

Final siRNA concentration

ng siRNA / μL PolyMAG or CombiMAG

ng siRNA / μL PolyMAG or CombiMAG

ng siRNA / μL PolyMAG or CombiMAG

ng siRNA / μL PolyMAG or CombiMAG

2 nM

5 nM 10 nM 20 nM 50 nM 75 nM

5.4 / 0.5 19.5 / 0.5 27 / 0.5 54 / 0.5 135 / 0.5 202.5 / 1.0

19.5 / 1.0 39.75 / 1.0 67.5 / 1.0 135 / 1.0 337.5 / 1.0 506.25 / 2.0

27 / 2.0 67.5 / 2.0 135 / 2.0 270 / 2.0 675 / 2.0 1012.5 / 2.0

54 / 2.0 135 / 2.0 270 / 2.0 540 / 2.0

1350 / 2.0 2025 / 2.0

*ng of siRNA was calculated on the basis of a MW = 13 500 g/mol

4.7.1 siRNA – PolyMAG Protocol

  1. Plate the cells the day before transfection or just before transfection in your appropriate tissue culture dish and volume of culture medium as suggested (see table section 4.2).
  2. Dilute the siRNA to 100 μL (or 200 μL) with culture medium without serum and supplement (such as DMEM) (see table for siRNA dilution procedure).
  3. Vortex the PolyMAG tube before each use. If required, PolyMAG can be diluted only with deionized water.
    Don’t dilute PolyMAG with serum or supplement-free serum.
  4. Add directly the appropriate volume/amount of PolyMAG to 100 μL (or 200 μL) of the diluted siRNA solution and mix immediately 4 – 5 times by vigorous pipetting.

5. Incubate the formed siRNA / PolyMAG complex 15 minutes at room temperature. 6. Add 100 μL (or 200 μL) of the binary complex drop by drop onto the cells.

Note: For some cells, serum-free condition for the first 3 hours of incubation might lead to better gene silencing. However, in most assays, siRNA delivery has been realized in culture medium with serum.

page22image3192320page22image3192512

chemicell GmbH • MagnetofectionTM 2.4 21

page22image3192704

Protocols
7. Place the cell culture plate upon the MagnetoFACTOR plate and incubate under

standard cell culture conditions for 10-20 minutes.

8. Remove the MagnetoFACTOR plate.

9. Cultivate the cells under standard conditions until evaluation of the gene silencing. Depending on the siRNA amount, the gene target and the cell type assays can be monitored 24 to 96 hours post-transfection.
We recommend 48 hours and 72 hours for RNA and protein knockdown analyses, respectively.

Note: Optionally a medium change can be performed 8-24 h after the transfection if your cells are sensitive to serum/supplement concentration.

4.7.2 siRNA – CombiMAG Protocol

For instance:

• Use 2 μL of CombiMAG for 20 nM siRNA final concentration in a 6-well plate (Transfection Volume 2 mL)

page23image3178688page23image3178880

1.

2.

3.

Plate the cells the day before transfection or just before transfection in your appropriate tissue culture dish and volume of culture medium as suggested (see table section 4.2).

Prepare the binary siRNA / Cationic Lipid Reagent complex similar to the instructions of the manufacturer. The final volume should be 100 μl (or 200 μl) with culture medium without serum and supplement (such as DMEM) (see table for siRNA dilution procedure).

Vortex the CombiMAG tube before each use. If required, CombiMAG can be diluted only with deionized water.
Don’t dilute CombiMAG with serum or supplement-free serum.

4. Add directly the appropriate volume/amount of CombiMAG to 100 μL (or 200 μL) to the siRNA / Cationic Lipid Reagent complex and mix immediately 4 – 5 times by vigorous pipetting.

5. Incubate the formed siRNA / Cationic Lipid Reagent / CombiMAG complex 15 minutes at room temperature.

6. Add 100 μL (or 200 μL) of the ternary complex drop by drop onto the cells.

page23image3179072

chemicell GmbH • MagnetofectionTM 2.4 22

page23image3179264

Protocols

page24image3369472

Note: For some cells, serum-free condition for the first 3 hours of incubation might lead to better gene silencing. However, in most assays, siRNA delivery has been realized in culture medium with serum.

  1. Place the cell culture plate upon the MagnetoFACTOR plate and incubate under standard cell culture conditions for 10-20 minutes.
  2. Remove the MagnetoFACTOR plate.
  3. Cultivate the cells under standard conditions until evaluation of the gene silencing. Depending on the siRNA amount, the gene target and the cell type assays can be monitored 24 to 96 hours post-transfection. We recommend 48 hours and 72 hours for RNA and protein knockdown analyses, respectively.

    Note: Optionally a medium change can be performed 8-24 h after the transfection if your cells are sensitive to serum / supplement concentration.

Cell culture conditions:

Best results are achieved when cells are 60 – 80 % confluent at the time of the transfection. If necessary, you can wash the culture medium containing the transfection mixture after 8-24 hours and replace it by fresh medium.

siRNA concentration:

We often observed good siRNA effects by concentrations from 10 nM to 50 nM. However the efficiency may depend on the cell line, the target (half life, expression level…) and the siRNA used. Consequently, we suggest to start by testing a range of siRNA concentrations in order to obtain the best experimental conditions.

MagnetofectionTM Standard transection Untreated cells

Magnetofection of siRNA. Synthetic siRNA directed against eGFP was purchased from MWG Biotech, Ebersberg, Germany. The RNA was mixed with PEI- coated magnetic particles and additional free linear PEI (25 kDa, Polysciences, Warrington, PA, USA) in DMEM. After 30 min incubation, the mixture was diluted 51.2-fold with DMEM containing 10% FCS to result in a final siRNA concentration of 65 nM. Aliquots of this mixture (150 μL) were added to HT1080 cells (5000 cells/well in a 96-well plate) which had previously been stably transduced with a retroviral vector coding for eGFP. The culture plate was placed on a magnetic plate during the first 15 min of incubation. A medium change was performed after 24 h. The figure shows the cells 65 h after transfection, documenting an efficient knock down of eGFP expression.

(Data kindly provided by Ch. Plank. Technical University Munich)

page24image81850144page24image3386432

chemicell GmbH • MagnetofectionTM 2.4 23

page24image3386048

Protocols
4.8. MagnetofectionTM – Viruses – CombiMAG Protocol

Viral infection is highly cell surface receptor-dependent. For instance, adenoviruses are dependent on cells to express CAR (Coxsackie’s and adenovirus receptor) and HIV on cells to express CD4.

Unfortunately, many important and interesting target tissues for fundamental research and gene therapy are non-permissive to viral gene delivery (tumor tissues and apical surface of lung epithelium may express variable, little or none of the required receptors).

• The association of viral vectors with CombiMAG is sufficient to force infection of non-permissive cells as shown with adenovirus.

• MagnetofectionTM also increases retroviral infectious capacity.

page25image3367744page25image3367936page25image3368128 page25image81871680

NIH 3T3 cells (lacking the coxsackie and adenovirus receptor, CAR) were transfected with a recombinant adenovirus (coding for LacZ) mixed with CombiMAG in the presence and in the absence of permanent magnets positioned under the culture plates.

page25image3368320

chemicell GmbH • MagnetofectionTM 2.4 24

page25image3368512

Protocols

page26image3199488

1. Cells should be plated in the same manner as required for standard viral gene delivery. For example, the confluency can be high for adenoviral vectors but must be low for retroviral vectors, which require cell division for infection. Cells must be plated the day prior transfection.

2. Provide a suitable amount (see examples below) of CombiMAG in a tube large enough to contain the volume of virus preparation added in step 3.

3. Add your virus preparation (e.g. retroviral supernatant or purified adenovirus diluted in HBS, PBS or cell culture medium) to the tube(s) containing CombiMAG and mix immediately by pipetting or gentle vortexing. Thereafter, incubate 15 minutes at room temperature.

4. The ratios virus / CombiMAG should be adjusted according to the viral titers and cell types used. For optimization, we suggest as a starting point to use 1.5 μL,
3 μL, 6 μL and 12 μL of CombiMAG with a fixed quantity of virus preparation / supernatant.

5. Add the mixture prepared in step 3 to the cells in duplicate or triplicate.
6. Place the cell culture plate upon the magnetic plate and incubate under standard

cell culture conditions for 10-20 minutes.

7. Remove the MagnetoFACTOR plate. Optionally perform a medium change.

8. Cultivate the cells under standard conditions until evaluation of transgene expression.

9. Depending on the viral vector type, the quantity of virus and the cell types used, this protocol would have to be adjusted.

Cell Type

Virus

CombiMAG

K562

Adenovirus (200 MOI)

6 μL

Human PBL

Adenovirus (500 MOI)

3 – 6 μL

NIH-3T3

Adenovirus (200 MOI)

3 – 6 μL

NIH-3T3

Retrovirus (1-5 x 103 X gal CFU/ml)

3 – 6 μL

page26image3201792

chemicell GmbH • MagnetofectionTM 2.4 25

page26image3201984

Protocols

page27image3365632page27image3365824

4.9. High Throughput Optimizations
The ratios of PolyMAG or CombiMAG to DNA can be varied by doubling or

multiplying the volumes of the reagents used.

Similarly, the reagents can be pre-diluted in deionized water and aliquots of the resulting dilutions are incubated with DNA or pre-formed DNA complexes, respectively, such as described above.

Finally, the assembled magnetofectins can be serially diluted to very low concentrations.

4.10. MagnetofectionTM – Optimization Protocol in 96-well Format

We recommend to optimize the transfection conditions in order to get the best results of MagnetofectionTM. Several parameters can be optimized:

• Ratio of PolyMAG / CombiMAG to nucleic acid or virus • Amount of nucleic acid
• Cell density
• Incubation time

For adherent cells, seed the cells at the desired density in a 96-well plate the day prior or at least several hours prior transfection in a total of 150 μL medium per well.

1. In four tubes, dilute 7.2 μg DNA with 352.8 μL serum- and supplement-free medium (e.g. DMEM)

2. Add 3.6 μL, 7.2 μL, 10.8 μL and 14.4 μL of PolyMAG (in case of DNA) or CombiMAG (in case of DNA-transfection reagent complex) reagent in well A1, A4, A7 and A10 of a 96-well plate.

3. Add the 352.8 μL DNA solution from step 1 to well A1, A4, A7, A10 containing PolyMAG and mix well by pipetting. Incubate for 15 min at room temperature.

page27image80147584page27image80147008

chemicell GmbH • MagnetofectionTM 2.4 26

page27image80147776

Protocols

page28image3363712

  1. (Optional) Perform a medium change for the cells to be transfected. Remove medium the cells have been seeded in and replace with 150 μL fresh medium (with or without serum or supplements).
  2. In the meantime add 180 μL serum- and supplement-free medium (e.g. DMEM) to the residual wells of column 1, 4, 7 and 10 of the 96-well plate (B1-H1, B4-H4, B7-H7, B10-H10).
  3. After the incubation in step 3 transfer 180 μL from well A1, A4, A7, A10 to B1, B4, B7, B10, mix by pipetting, transfer 180 μL from B1, B4, B7, B10 to C1, C4, C7, C10, mix by pipetting and so on down to H1, H4, H7, H10.
  4. Transfer 50 μL each in duplicate from column 1, 4, 7 and 10 to the columns of the cell culture plate where the cells to be transfected have been seeded
    (column 2/3 , 5/6 , 8/9 , 11/12).

8. Place the culture plate on the MagnetoFACTOR plate and incubate under cell culture conditions for 10-20 min.

9. Remove MagnetoFACTOR plate.
10. (Optional) Perform a medium change, particularly if the transfection has been

carried out in serum-free medium. 11. Continue to culture cells as desired.

page28image81984336page28image3363904page28image3364096

chemicell GmbH • MagnetofectionTM 2.4 27

page28image3364288

Protocols

page29image3361792page29image3361984

4.11. Troubleshooting

Low Transfection Efficiency

  • ▪  Inappropriate buffer composition:

    Serum-free buffer or medium has to be used for the formation of the PolyMAG/DNA- or CombiMAG/DNA complex, otherwise proteins from the serum will bind to PolyMAG or CombiMAG. Once the PolyMAG/DNA- or CombiMAG/DNA complex is formed it can be applied to cells in the presence of serum.

  • ▪  Suboptimal ratio of PolyMAG or CombiMAG to nucleic acid or virus: Determine the optimal ratio of PolyMAG or CombiMAG to DNA by using the

    optimization protocol for 96-well plate (section 4.10).

  • ▪  Correct handling of the MagnetoFACTOR plate:

    Use the MagnetoFACTOR plate with the magnets facing up. After addition of the PolyMAG/DNA- or CombiMAG/DNA complex to the cells, position the cell culture plate on the MagnetoFACTOR plate.

  • ▪  Positive control:
    Perform a positive control transfection experiment with a well-characterized

    reporter gene (e,g. GFP, Luciferase).

  • ▪  Mycoplasma contamination:
    Mycoplasma contamination alters transfection efficiency.
  • ▪  Cell condition:
    Cells that have been in culture for a long time may become resistant to

    transfection. Use freshly thawed cells that have been passaged at least once.

page29image3362176

chemicell GmbH • MagnetofectionTM 2.4 28

page29image3362368

Protocols

page30image3358912

Cellular Toxicity

  • ▪  Cell density (% confluence) was not optimal at the time of transfection: Adherent cells are seeded such that they reach 60-80 % confluency at the time of MagnetofectionTM. If the cell density is too low, increased toxicity may be observed. For suspension cells it is necessary that the cells are immobilized on the well bottom (section 4.6).
  • ▪  Suboptimal amount of DNA (section 4.10):
    Using MagnetofectionTM, approximately 5 x less DNA compared to Lipofection is

    necessary.

  • ▪  Purity of transfecting molecule:
    Check the purity of the molecule of interest to be delivered (lipopolysaccharides

    which are endotoxins will cause cell death).

  • ▪  Amounts of PolyMAG or CombiMAG:
    Higher amounts of PolyMAG or CombiMAG may be cell toxic and can additional

    reduce the transfection efficiency.

  • ▪  Incubation time on the MagnetoFACTOR plate:
    Longer incubation times (e.g. 4 hours) with PolyMAG/DNA- or CombiMAG/DNA

    complex plus application of an magnetic field can cause toxic effects.

  • ▪  Incubation time after MagnetofectionTM:
    Reduce the incubation time of complexes with the cells. Transfection medium can

    be replaced by fresh medium after 4 hours.

page30image3377024

chemicell GmbH • MagnetofectionTM 2.4 29

page30image3380864

References

page31image3379904

  1. 9.001  Plank C., Scherer F., Schillinger U., Anton M. Magnetofection: Enhancement and localization of gene delivery with magnetic particles under influence of a magnetic fields. J. Gene Med. 2000; 2((5) Suppl.): S24.
  2. 9.002  Scherer F., Anton M., Schillinger U., Henke J., Bergemann C., Krüger A., Gänsbacher B. and Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy 2002; 9: 102-109.
  3. 9.003  Plank C., Schillinger U., Scherer F., Bergemann C., Remy J.-S., Krötz F., Anton M., Lausier J. and Rosenecker J. The Magnetofection Method: Using Magnetic Force to Enhance Gene Delivery. Biol. Chem. May 2003; 384: 737-747.
  4. 9.004  Plank C., Anton M., Rudolph C., Rosenecker J. and Krötz F. Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opinion on Biological Therapy 2003; 3: 745-758.
  5. 9.005  Plank C., Scherer F., Schillinger U., Bergemann C., Anton M. Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J. Liposome Res. 2003; 13(1): 29-32.
  6. 9.006  Plank C. Magnetofection: enhancing and targeting gene delivery with lipid-DNA vectors by magnetic force. J. Liposome Res. 2003; 13(1): 105-106.
  7. 9.007  Krötz F., Son HY., Gloe T., Planck C. Magnetofection Potentiates Gene Delivery to Cultured Endothelial. Journal of Vascular Research 2003; 40: 425-434.
  8. 9.008  Krötz F., Wit C., Sohn HY., Zahler S., Gloe T., Pohl U. and Plank C. Magnetofection-A highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol. Ther. May 2003; 7(5): 700-710.
  9. 9.009  Bridell H. Magnetic field guided nucleic acid delivery to target the Raf-1 kinase in human umbilical vein endothelial cells. Master thesis in medical science 2003, Technical University of Munich, Germany.
  10. 9.010  Gersting S-W., Schillinger U., Lausier J., Nicklaus P., Rudolph C., Plank C., Reinhardt D. and Rosenecker J. Gene delivery to respiratory epithelial cells by magnetofection. J.Gene Medicine 2004; 6: 913-922.
  11. 9.011  Griesenbach U., Duncan M. Geddes and Eric W.F.W. Alton. Advances in cystic fibrosis gene therapy. Current Opinion in Pulmonary Medicine 2004; 10: 542–546.
  12. 9.012  Huth S., Lausier J., Gersting S-W., Rudolph C., Plank C., Welsch U. and Rosenecker J. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J.Gene Medicine 2004; 6: 923-936.
  13. 9.013  Rashmi K. Ambasta, Pravir Kumar et al. Direct Interaction of the Novel Nox Proteins with p22phox Is required for the Formation of a Functionally Active NADPH Oxidase.
    J. of Biological Chem. 2004; 279 (44): 45935-45941.
  14. 9.014  Weizhong W., XU Chunfang, WU Hua Use of PEI-coated Magnetic Iron Oxide Nanoparticles as Gene Vectors Journal of Huazhong University of Science and Technology (Med. Sci.) 2004; 24 (6): 618-620.

page31image3380096

chemicell GmbH • MagnetofectionTM 2.4 30

page31image3380288

References

page32image3376640

  1. 9.015  Basile J. R.,T alayeh Afkhami and J. Silvio Gutkind. Semaphorin 4D/Plexin-B1 Induces Endothelial Cell Migration through the Activation of PYK2, Src, and the Phosphatidylinositol 3-Kinase–Akt Pathway. Molecular and Cellular Biology 2005; 25 (16): 6889–6898.
  2. 9.016  Kadota S., Kanayama T., Miyajima N., Takeuchi K. and Nagata K. Enhancing of measles virus infection by magnetofection. J. of Virol. Methods 2005; 128(1-2): 61-66.
  3. 9.017  Chudotvorova I., Ivanov A., Rama S., Hübner C.A., Pellegrino C., Ben-Ari Y. and Medina I. Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. J. Physiol. 2005; 566.3: 671-679.
  4. 9.018  Fransen M., Ilse Vastiau, Chantal Brees, Vanessa Brys Guy P. Mannaerts and Paul P. Van Veldhoven. Analysis of Human Pex19p’s Domain Structure by Pentapeptide Scanning Mutagenesis. J. Mol. Biol. 2005; 346: 1275–1286.
  5. 9.019  Goulimari P. et al. Gα12/13 Is Essential for Directed Cell Migration and Localized Rho-Dia1 Function. JBC 2005; 280 (51): 42242-42251.
  6. 9.020  Hollander K., Michal Bar-Chen, Shimon Efrat. Baculovirus p35 increases pancreatic b-cell resistance to apoptosis. Biochemical and Biophysical Research Communications 2005; 332: 550–556.
  7. 9.021  Krötz F., Engelbrecht B., Buerkle MA., Bassermann F., Bridell H., Gloe T., Duyster J., Pohl U. and

Sohn HY . The tyrosine phosphatase, SHP-1, is a negative regulator of endothelial superoxide formation. J. Am. Coll. Cardiol. 2005; 45(10): 1700-1706.

  1. 9.022  Recklies A.D., Hua Ling, Chantal White, and Suzanne M. Bernier. Inflammatory Cytokines Induce Production of CHI3L1 by articular Chondrocytes. J. of Biol. Chem. 2005; 280 (50): 41213-41221.
  2. 9.023  Uchida Y. et al. Semaphorin 3A signalling is mediated via sequential Cdk5 and GSK3βphosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes to Cells 2005; 10: 165-179.
  3. 9.024  Schillinger et al. Advances in magnetofection-magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials 2005; 293: 501-508.
  4. 9.025  Kumbrink J., Gerlinger M. and Johnson J. P. Egr-1 Induces the Expression of Its Corepressor Nab2 by Activation of the Nab2 Promoter Thereby Establishing a Negative Feedback Loop. JBC 2005; 280 (52): 42785-42799.
  5. 9.026  Liman J. et al. Interaction of BAG1 and Hsp70 Mediates Neuroprotectivity and Increases Chaprone Activity. Mol. and Cell. Biology 2005; 25 (9): 3715-3725.
  6. 9.027  Stadler S. C., Roman Polanetz, Stephan Meier, Peter U. Mayerhofer, Johannes M. Herrmann, Katja Anslinger, Adelbert A. Roscher, Wulf Röschinger, Andreas Holzinger Mitochondrial targeting signals and mature peptides of 3-methylcrotonyl-CoA carboxylase
    Biochemical and Biophysical Research Communications 2005; 334:939–946.
  7. 9.028  Basile J. R., Rogerio M. Castilho, Vanessa P. Williams and J. Silvio Gutkind. Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. PNAS 2006; 103 (24): 9017-9022.

page32image3376832

chemicell GmbH • MagnetofectionTM 2.4 31

page32image80145856

References

page33image3345600

  1. 9.029  Doshida M. et al. Raloxifene Increases Proliferation and Up-regulates Telomerase Activity in Human Umbilical Vein Endothelial Cells. The Journal of Biological Chemistry 2006; 281 (34): 24270-24278.
  2. 9.030  Kamau Sarah W. et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acid Research 2006; 34 (5).
  3. 9.031  Kaneko M., Weiwen Yang, Yoshiki Matsumoto, Fujiko Watt, Keiko Funa. Activity of a novel PDGF β-receptor enhancer during the cell cycle and upon differentiation of neuroblastoma. Experimental Cell Research 2006; 312: 2028-2039.

9.032Kaur S. et al. Robo4 Signaling in Endothelial Cells Implies Attraction Guidance Mechanisms. J. of Biol. Chem. 2006; 281 (16): 11347-11356.

  1. 9.033  Kim E-A., Yoon Tae Noh, Myung-Jeom Ryu, Hyun-Taek Kim, Sung-Eun Lee, Cheol-Hee Kim, Cheolju Lee, Young Ho Kim and Cheol Yong Choi. Phosphorylation and Transactivation of Pax6 by Homeodomain-interacting Protein Kinase 2. J. of Biolog. Chem. 2006; 281 (11): 7489–7497.
  2. 9.034  Nagata D., Takahashi M., Sawai K., Tagami T., Usui T., Shimatsu A., Hirata Y., Naruse M.

    Molecular Mechanism of the Inhibitory Effect of Aldosterone on Endothelial NO Synthase Activity. Hypertension 2006; 48: 165-171.

  3. 9.035  Pasder O. et al. Downregulation of Fer induces PP1 activation and cell-cycle arrest in malignant cells. Oncogene 2006; 25: 4194-4206.
  4. 9.036  Pinto M.P., Grou C.P., Alencastre I.S., Oliveira M.E., Miranda C.S., Fransen M. and Azevedo J.E.

    The Import Competence of a Peroxisomal Membrane Protein Is Determined by Pex19p before the Docking Step. The J. of Biolog. Chem. 2006; 281(45): 34492–34502.

  5. 9.037  Romero D. G., Welsh B.L., Gomez-Sanchez E.P., Yanes L.L., Rilli S. and Gomez-Sanchez C.E.

    Angiotensin II-Mediated Protein Kinase D Activation Stimulates Aldosterone and Cortisol Secretion in H295R Human Adrenocortical Cells. Endocrinology 2006; 147(12): 6046–6055.

  6. 9.038  Sapet C., Simoncini S., Loriod B., Puthier D., Sampol J., Nguyen C., Dignat-George F. and Anfosso F. Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 2006; 108: 1868-1876.
  7. 9.039  Seki T., Irie N., Nakamura K., Sakaue H., Ogawa W., Kasuga M., Yamamoto H., Ohmori S., Saito N. and Sakai N. Fused protein of δPKC activation loop and PDK1-interacting fragment (δAL-PIF) functions as a pseudosubstrate and an inhibitory molecule for PDK1 when expressed in cells. Genes to Cells 2006; 11: 1051–1070.
  8. 9.040  Wang J., Zhang Y, Wei J., Zhang X., Zhang B., Zhu Z., Zou W., Wang Y., Mou Z., Ni B. and Wu Y.

    Lewis X oligosaccharides targeting to DC-SIGN enhanced antigen-specific immune response. Immunology 2006; 121: 174–182.

  9. 9.041  Weizhong W., Xu C., Wu H. Magnetic Iron Oxide Nanoparticles Mediated Gene Therapy for Breast Cancer-An In Vitro Study. Journal of Huazhong University of Science and Technology (Med. Sci.) 2006; 26 (6): 728-730.
  10. 9.042  Xenariou S. et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Therapy 2006; 1-8.

page33image3345792

chemicell GmbH • MagnetofectionTM 2.4 32

page33image3345984

References

page34image3502464

9.043McCAIG C et al. The Role of Matrix Metalloproteinase-7 in Redefining the astric Microenvironment in Response to Helicobacter pylori. Gastroenterology 2006; 130:1754– 1769.

  1. 9.044  Minami R., Yamamoto M., Takahama S., Miyamura T., Watanabe H., Suematsu E. RCAS1 induced by HIV-Tat is involved in the apoptosis of HIV-1 infected and uninfected CD4+ T cells. Cellular Immunology 2006; 243: 41–47.
  2. 9.045  Mizutani C. et al. Mechanisms of establishment of persistent SARS-CoV-infected cells. Biochemical and Biophysical Research Communications 2006; 347: 261-265.
  3. 9.046  Mizutani C. et al. Inhibition of cell proliferation by SARS-CoV infection inVeroE6cells. FEMS Immunol Med Microbiol 2006; 46: 236-249.
  4. 9.047  Mukai H.Y., Motohashi H., Ohneda O., Suzuki N., Nagano M. and Yamamoto M. Transgene Insertion in Proximity to the c-myb Gene Disrupts Erythroid-Megakaryocytic Lineage Bifurcation. Mol. and Cell. Biology 2006; 26 (21): 7953–7965.
  5. 9.048  Rubic T., Reinhard L. Lorenz Downregulated CD36 and oxLDL uptake and stimulated ABCA1/G1 and cholesterol efflux as anti-atherosclerotic mechanisms of interleukin-10. Cardiovascular Research 2006; 69: 527 – 535.
  6. 9.049  Kojima T., Ken-ichi Nakahama, Kiyotaka Yamamoto, Hiroshi Uematsu and Ikuo Morita Age- and cell cycle-dependent changes in EPC-1/PEDF promoter activity in human diploid fibroblast- like (HDF) cells. Molecular and Cellular Biochemistry 2006; 293: 63–69.
  7. 9.050  Baer K., Bürli T., Huh K-H, Wiesner A., Erb-Vögtli S., Göckeritz-Dujmovic D., Moransard M., Nishimune A., Rees M.I., Henley J.M., Fritschy J-M and Fuhrera C. PICK1 interacts with α7 neuronal nicotinic acetylcholine receptors and controls their clustering. Mol. Cell. Neurosci. 2007; 35: 339–355.
  8. 9.051  Basile J.R., Holmbeck K., Bugge T.H. and Gutkind J.S. MT1-MMP Controls Tumor-induced Angiogenesis through the Release of Semaphorin 4D. J. of Biolog. Chem. 2007; 282 (9): 6899–6905.
  9. 9.052  Buerli T., Pellegrino C., Baer K., Lardi-Studler B., Chudotvorova I., Fritschy J-M., Medina I. and Fuhrer C. Efficient transfection of DNA or shRNA vectors intoneurons using Magnetofection NATURE PROTOCOLS 2007; 2(12): 3090-3101.
  10. 9.053  Couchoux H., Allard B., Legrand C., Jacquemond V. and Berthier C. Loss of caveolin-3 induced by the dystrophy-associated P104L mutation impairs L-type calcium channel function in mouse skeletal muscle cells. J. of Physiol. 2007; 580.3: 745–754.
  11. 9.054  Deleuze V., Chalhoub E., El-Hajj R., Dohet C., Le Clech M., Couraud P-O., Philippe H. and Mathieu D. TAL-1/SCL and Its Partners E47 and LMO2 Up-Regulate VE-Cadherin Expression in Endothelial Cells. Mol. and Cell. Biology 2007; 27 (7): 2687–2697.
  12. 9.055  Eder P., D. Probst, C. Rosker, M. Poteser, H. Wolinski, S.D. Kohlwein, C. Romanin, K. Groschner

    Phospholipase C-dependent control of cardiac calcium homeostasis involves a TRPC3- NCX1 signaling complex. Cardiovascular Research 2007; 73: 111–119.

page34image3502656

chemicell GmbH • MagnetofectionTM 2.4 33

page34image3502848

References

page35image3457408

  1. 9.056  Fukushima T., Tezuka T., Shimomura T., Nakano S. and Kataoka H. Silencing of Insulin-like Growth Factor-binding Protein-2 in Human Glioblastoma Cells Reduces Both Invasiveness and Expression of Progression-associated Gene CD24. J. of Biolog. Chem. 2007; 282 (25): 18634–18644.
  2. 9.057  Jahnke A., Hirschberger J., Fischer C., Brill T., Köstlin R., Plank C., Küchenhoff H., Krieger S., Kamenica K. and Schillinger U. Intra-tumoral Gene Delivery of feIL-2, feIFN-c and feGM-CSF using Magnetofection as a Neoadjuvant Treatment Option for Feline Fibrosarcomas: A Phase-I Study. J. Vet. Med. A 2007; 54: 1-8.
  3. 9.058  Romero D.G., Yanes L.L., de Rodriguez A.F., Plonczynski M.W., Welsh B.L., Reckelhoff J.F., Gomez-Sanchez E.P. and Gomez-Sanchez C.E. Disabled-2 (Dab2) is Expressed in Adrenal Zona Glomerulosa and is Involved in Aldosterone Secretion. Endocrinology 2007, First published ahead of print February 15, 2007 as doi:10.1210/en. 2006-1509.
  4. 9.059  Romero D.G., Rilli S., Plonczynski M.W., Yanes L.L., Zhou M.Y., Gomez-Sanchez E.P. and Gomez-Sanchez C.E. Adrenal transcription regulatory genes modulated by angiotensin II and their role in steroidogenesis. Physiol. Genomics 2007; 30: 26–34.
  5. 9.060  Sacha J.B., Chung C., Rakasz E.G., Spencer S.P., Jonas A.K., Bean A.T., Lee W., Burwitz B.J., Stephany J.J., Loffredo J.T, Allison D.B., Adnan S., Hoji A., Wilson N.A., Friedrich T.C., Lifson J.D., Yang O.O. and Watkins D.I. Gag-Specific CD8+ T Lymphocytes Recognize Infected Cells before AIDS-Virus Integration and Viral Protein Expression. The Journal of Immunology 2007; 178: 2746–2754.
  6. 9.061  Steele I.A., Rod Dimaline R., Pritchard D.M., Peek Jr. R.M., Wang T.C., Dockray G.J. and Varro A.

    Helicobacter and gastrin stimulate Reg1 expression in gastric epithelial cells through distinct promoter elements. Am. J. Physiol. Gastrointest. Liver Physiol. 2007; 293: G347–G354.

  7. 9.062  Schäfer C., Hoffmann L., Heldt K., Reza M., Lornejad-Schäfer, Brauers G., Gehrmann T., Garrow T.A., Häussinger D., Mayatepek E., Schwahn B.C. and Schliess F. Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells. Am J Physiol Gastrointest Liver Physiol 2007; 292:1089-1098.
  8. 9.063  Tan Z., X Sun, F-S Hou, H-W Oh, LGW Hilgenberg, EM Hol, FW van Leeuwen, MA Smith, DK O’Dowd and SS Schreiber. Mutant ubiquitin found in Alzheimer’s disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death and Differentiation 2007; 14: 1721–1732.
  9. 9.064  Nakamura A., Yukiko Sakai, Chieri Ohata, Toshi Komurasaki. Expression and significance of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-1 in an animal model of renal interstitial fibrosis induced by unilateral ureteral obstruction. Experimental and Toxicologic Pathology 2007; 59: 1–7.
  10. 9.065  McBain S.C., H. H. P. Yiu, A. El Haj and J. Dobson. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. Journal of Materials Chemistry 2007; 17: 2561–2565.
  11. 9.066  Huang P., T Senga and M Hamaguchi. A novel role of phospho-b-catenin in microtubule regrowth at centrosome. Oncogene 2007; 26: 4357–4371.
  12. 9.067  Hasegawa T., Toshiyuki Matsuzaki, Yuki Tajika, Abduxukur Ablimit, Takeshi Suzuki, Takeo Aoki Haruo Hagiwara, Kuniaki T akata. Differential localization of aquaporin-2 and glucose transporter 4 in polarized MDCK cells. Histochem Cell Biol 2007; 127: 233–241.

page35image3472576

chemicell GmbH • MagnetofectionTM 2.4 34

page35image3284288

References

page36image3304512

  1. 9.068  Guix S., Miyuki Asanaka, Kazuhiko Katayama, Sue E. Crawford, Frederick H. Neill, Robert L. Atmar, and Mary K. Estes. Norwalk Virus RNA Is Infectious in Mammalian Cells. Journal of Virology 2007; 81(22): 12238 – 12248.
  2. 9.069  Varro A., Kenny S., Hemers E., McCaig C., Przemeck S., Wang T.C., Bodger K. and Pritchard D.M. Increased gastric expression of MMP-7 in hypergastrinemia and significance for epithelial-mesenchymal signalling. Am. J. Physiol. Gastrointest. Liver Physiol. 2007; 292: G1133–G1140.
  3. 9.070  Lardi-Studler B., Smolinsky B., Petitjean C.M., Koenig F., Sidler C., Meier J.C., Fritschyl J-M. and Schwarz G. Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. Journal of Cell Science 2007; 120: 1371-1382.
  4. 9.071  Lartigue G., Dimaline R., Varro A. and Dockray G.J. Cocaine- and Amphetamine-Regulated Transcript: Stimulation of Expression in Rat Vagal Afferent Neurons by Cholecystokinin and Suppression by Ghrelin. The Journal of Neuroscience 2007; 27(11): 2876 –2882.
  5. 9.072  Mykhaylyk O., Vlaskoua D., Tresilwised N., Pithayanukul P, Möller W., Plank C. Magnetic nanoparticle formulations for DNA and siRNA delivery. J.of Magnetism and Magnetic Materials 2007; 311: 275–281.
  6. 9.073  Mykhaylyk O., Antequera Y.S., Vlaskou D. & Plank Ch. Generation of magnetic nonviral gene transfer agents and Magnetofection in vitro. Nature Protocols 2007; 2(10): 1-21.
  7. 9.074  Yim H-J., Kim H-J., Ko J-H., Cho Y-E., Kim S-M., Kim J-Y., Lee S. and Park J-H. The putative tumor suppressor gene GLTSCR2 induces PTEN-modulated cell death. Cell Death and Differentiation 2007; 1-8.
  8. 9.075  Yim Ji-Hye, Yong-Jun Kim, Young-Eun Cho, Jeong-Hun Ko, Su-Mi Kim, Jee-Youn Kim, Jae-Hoon Park. GLTSCR2 Sensitizes Cells to Hypoxic Injury without Involvement of Mitochondrial Apoptotic Cascades Pathobiology 2007;74:301–308.
  9. 9.076  Yoon W. S., Won Cheol Choi, Jeong-Im Sin, Yong Keun Park Antitumor therapeutic effects of Salmonella typhimurium containing Flt3 Ligand expression plasmids in melanoma-bearing mouse. Biotechnology Letters 2007; 29:511–516.
  10. 9.077  Thomas J.A., Ott D.E. and Gorelick R.J. Efficiency of Human Immunodeficiency Virus Type 1 Postentry Infection Processes: Evidence against Disproportionate Numbers of Defective Virions. Journal of Virology 2007; 81 (8): 4367–4370.
  11. 9.078  Arnoux V., Mayssaa Nassour, Annie L’Helgoualch, Robert A. Hipskind and Pierre Savagner. Erk5 Controls Slug Expression and Keratinocyte Activation during Wound Healing. Molecular Biology of the Cell 2008; 19: 4738–4749.
  12. 9.079  Ashurst H.L., Andrea Varro and Rod Dimaline. Regulation of mammalian gastrin/CCK receptor (CCK2R) expression in vitro and in vivo. Experimental Physiology 2008; 99.2: 223–236.
  13. 9.080  Bataille A.M., James Goldmeyer, and J. Larry Renfro. Avian renal proximal tubule epithelium urate secretion is mediated by Mrp4. Am J Physiol Regul Integr Comp Physiol 2008; 295: R2024–R2039.

page36image3304704

chemicell GmbH • MagnetofectionTM 2.4 35

page36image3304896

References

page37image3299904

  1. 9.081  Burdyga G., Guillaume de Lartigue, Helen E. Raybould, Richard Morris, Rod Dimaline, Andrea Varro, David G. Thompson and Graham J. Dockray. Cholecystokinin Regulates Expression of Y2 Receptors in Vagal Afferent Neurons Serving the Stomach. The Journal of Neuroscience 2008; 28(45):11583–11592.
  2. 9.082  Cestéle S., Paolo Scalmani, Raffaella Rusconi, Benedetta Terragni, Silvana Franceschetti and Massimo Mantegazza. Self-Limited Hyperexcitability: Functional Effect of a Familial Hemiplegic Migraine Mutation of the Nav1.1 (SCN1A) Na+ Channel. The Journal of Neuroscience 2008; 28(29): 7273–7289.
  3. 9.083  Dobson J., SC McBain, N Farrow, CD Batich. Oscillating magnet arrays for enhanced magnetic nanoparticle-based gene transfection. European Cells and Materials 2008; 16 Suppl. 3: (page 48).
  4. 9.084  Choi S. M., Cho H-J., Cho H., Kim K. H., Kim J. B. and Park H. Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependet mechanism. Nucleic Acids Research 2008; Published October 5: 1-14.
  5. 9.085  Francois M., Andrea Caprini, Brett Hosking, Fabrizio Orsenigo, Dagmar Wilhelm, Catherine Browne, Karri Paavonen, Tara Karnezis, Ramin Shayan, Meredith Downes, Tara Davidson, Desmond Tutt, Kathryn S. E. Cheah, Steven A. Stacker, George E. O. Muscat, Marc G. Achen, Elisabetta Dejana & Peter Koopman. Sox18 induces development of the lymphatic vasculature in mice NATURE 2008; 456: 643-648.

9.086Guillaud L., Wong R. and Hirokawa N. Disruption of KIF17–Mint1 interaction by CaMKIIdependent phosphorylation: a molecular model of kinesin–cargo release. Nature Cell Biology 2008; 10 (1): 19-29.

  1. 9.087  Hüttinger C., Hirschberger J., Jahnke A., Köstlin R., Brill T., Plank C., Küchenhoff H., Krieger S. and Schillinger U. Neoadjuvant gene delivery of feline granulocyte-macrophage colony- stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J. of Gene Med. 2008; 10: 655–667.
  2. 9.088  Kim Y.-B., Suyong Choi, Moon-Chang Choi, Min-A Oh, Sin-Ae Lee, Moonjae Choy, Kensaku Mizuno, Sung-Hoon Kim and Jung Weon Lee. Cell Adhesion-dependent Cofilin Serine 3 Phosphorylation by the Integrin-linked Kinase c-Src Complex. J. of Biolog. Chem. 2008; 283 (15): 10089–10096.
  3. 9.089  Kojima A., Ken-ichi Nakahama, Kyoko Ohno-Matsui, Noriaki Shimada, Keisuke Mori, Sachiko Iseki, Tetsuji Sato, Manabu Mochizuki, Ikuo Morita. Connexin 43 contributes to differentiation of retinal pigment epithelial cells via cyclic AMP signalling. Biochemical and Biophysical Research Communications 2008; 366: 532–538.
  4. 9.090  Kuczewski N., Christophe Porcher, Nadine Ferrand, Hervé Fiorentino, Christophe Pellegrino, Richard Kolarow, Volkmar Lessmann, Igor Medina and Jean-Luc Gaiarsa. Backpropagating Action Potentials Trigger Dendritic Release of BDNF during Spontaneous Network Activity. The Journal of Neuroscience 2008; 28(27): 7013–7029.
  5. 9.091  Lee C. H., Kim E. J., Jeon K., Tae J. C., Lee K. S., Kim Y. O., Jeong M.-Y., C.-W. Yun et. al.

    Simple, Efficient, and Reproducible Gene Transfection of Mouse Embryonic Stem Cells by Magnetofection. Stem Cells and Development 2008; 17:133–141.

page37image80141440

chemicell GmbH • MagnetofectionTM 2.4 36

page37image80142400

References

page38image80142208

  1. 9.092  Mannell H., Nicole Hellwig, Torsten Gloe, Christian Plank, Hae-Young Sohn, Leopold Groesser, Barbara Walzog, Ulrich Pohl, Florian Krötz. Inhibition of the Tyrosine Phosphatase SHP-2 Suppresses Angiogenesis in vitro and in vivo. Journal of Vascular Research 2008; 45: 153– 169.
  2. 9.093  Markova O., Marat Mukhtarov, Eleonore Real, Yves Jacob, Piotr Bregestovski. Genetically encoded chloride indicator with improved sensitivity. Journal of Neuroscience Methods 2008; 170: 67–76.
  3. 9.094  Matchkov V.V., Per Larsen, Elena V. Bouzinova, Aleksandra Rojek, Donna M. Briggs Boedtkjer, Veronika Golubinskaya, Finn Skou Pedersen, Christian Aalkjær and Holger Nilsson. Bestrophin-3 (Vitelliform Macular Dystrophy 2–Like 3 Protein) Is Essential for the cGMP-Dependent Calcium-Activated Chloride Conductance in Vascular Smooth Muscle Cells. Circ. Res. 2008;103: 864-872.
  4. 9.095  McBain S.C., U. Griesenbach, S. Xenariou, A. Keramane, C.D. Batich, E.W.F.W. Alton and J. Dobson. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 2008; 19: 405102 (5pp).
  5. 9.096  Mukhtarov M., Markova O., Real E., Jacob Y., Buldakova S., Bregestovski P. Monitoring of chloride and activity of glycine receptor channels using genetically encoded fluorescent sensors. Phil. Trans. R. Soc. A 2008; 366: 3445–3462.
  6. 9.097  Sbai O., Lotfi Ferhat, Anne Bernard, Yatma Gueye, Adlane Ould-Yahoui, Sophie Thiolloy, Eliane Charrat, Gérard Charton, Evelyne Tremblay, Jean-Jacques Risso, Jean-Paul Chauvin, Jean- Pierre Arsanto, Santiago Rivera, Michel Khrestchatisky. Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells. Molecular and Cellular Neuroscience 2008; 39: 549–568.
  7. 9.098  Ufer C., Chi Chiu Wang, Michael Fähling, Heike Schiebel, Bernd J. Thiele, E. Ellen Billett, Hartmut Kuhn and Astrid Borchert. Translational regulation of glutathione peroxidase 4 expression through guaninerich sequence-binding factor 1 is essential for embryonic brain development. Genes & Development 2008; 22: 1838-1850.

9.099Yamaguchi T., Yoshihisa Watanabe, Masaki Tanaka, Masanori Nakagawa and Nozomi Yamaguchi. cAMP-Dependent Regulation of Spinesin/TMPRSS5 Gene Expression in Astrocytes. Journal of Neuroscience Research 2008; 86: 610–617.

  1. 9.100  Yang Shieh-Yueh, Jui-Sheng Sun, Cheng-Heng Liu, Yang-Hwei Tsuang, Li-Ting Chen, Chin-Yih Hong, Hong-Chang Yang, and Herng-Er Horng. Ex Vivo MagnetofectionWith Magnetic Nanoparticles: A Novel Platform for Nonviral Tissue Engineering.
    Artif Organs 2008; 32 (3):195–204.
  2. 9.101  Han S.J., Duong H.-Q., Choi J. E., Lee T.-B., Kim C. H., Lee S. Y., Jeon H. M., Shin S.-H., Lim S.- C. and Kang H. S. Hyperthermia switches glucose depletion-induced necrosis to apoptosis in A549 lung adenocarcinoma cells. INTERNATIONAL JOURNAL OF ONCOLOGY 2008; 32: 851-860.
  3. 9.102  Mykhaylyk O., Olivier Zelphati, Joseph Rosenecker & Christian Plank siRNA delivery by magnetofection. Current Opinion in Molecular Therapeutics 2008 10(5): 1-19.
  4. 9.103  Rhee Dong Kuen, Su Hyung Park, Yeun Kyu Jang Molecular signatures associated with transformation and progression to breast cancer in the isogenic MCF10 model. Genomics 2008; 92: 419–428.

page38image3294336

chemicell GmbH • MagnetofectionTM 2.4 37

page38image3294912

References

page39image80135296

  1. 9.104  Cho Li-La, Young-Mee Moon, Yu-Jung Heo, Yun-JuWoo, Ji-Hyeon Ju, Kyung-Su Park, Sung-Il Kim, Sung-Hwan Park, Ho-Youn Kim, Jun-Ki Min. NF-кB inhibition leads to increased synthesis and secretion of MIF in human CD4+ T cells. Immunology Letters 2009; 123: 21–30.
  2. 9.105  Egaňa L.A., Rolando A. Cuevas, Tracy B. Baust, Leonardo A. Parra, Rehana K. Leak, Sarah Hochendoner, Karina Peňa, Marisol Quiroz, Weimin C. Hong, Mario M. Dorostkar, Roger Janz, Harald H. Sitte and Gonzalo E. Torres. Physical and Functional Interaction between the Dopamine Transporter and the Synaptic Vesicle Protein Synaptogyrin-9. The Journal of Neuroscience 2009; 29(14): 4592– 4604.

9.106Fiorentino H., Nicola Kuczewski, Diabe Diabira, Nadine Ferrand, Menelas N. Pangalos, Christophe Porcher and Jean-Luc Gaiarsa. GABAB Receptor Activation Triggers BDNF Release and Promotes the Maturation of GABAergic Synapses. The Journal of Neuroscience 2009; 29(37): 11650 –11661.

  1. 9.107  Ivanov A., Monique Esclapez, Christophe Pellegrino, Tomoaki Shirao and Lotfi Ferhat. Drebrin A regulates dendritic spine plasticity and synaptic function in mature cultured hippocampal neurons. Journal of Cell Science 2009; 122: 524-534.
  2. 9.108  Kenny S., Cedric Duval, Stephen J. Sammut, Islay Steele, D. Mark Pritchard, John C.Atherton, Richard H. Argent, Rod Dimaline, Graham J. Dockray and Andrea Varro. Increased expression of the urokinase plasminogen activator system by Helicobacter pylori in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2009; Article in press.
  3. 9.109  Megias J., Maria Isabel Guillen, Victoria Clerigues, Ana I. Rojo, Antonio Cuadrado, Miguel Angel Castejon, Francisco Gomar, Maria Jose Alcaraz. Heme oxygenase-1 induction modulates microsomal prostaglandin E synthase-1 expression and prostaglandin E2 production in osteoarthritic chondrocytes. Biochemical Pharmacology 2009; 77: 1806–1819.

9.110Tanaka M., Yoshihisa Watanabe and Kanji Yoshimoto. Regulation of Relaxin 3 Gene Expression Via cAMP-PKA in a Neuroblastoma Cell Line. Journal of Neuroscience Research 2009; 87: 820–829.

  1. 9.111  Svingen T., Wilhelm D., Combes A. N., Hosking B., Harley V. R., Sinclair A. H. and Koopman P.

    Ex Vivo Magnetofection: A Novel Strategy for the Study of Gene Function in Mouse Organogenesis. DEVELOPMENTAL DYNAMICS 2009; 238:956–964.

  2. 9.112  Wong J. and Cynthia Shannon Weickert Transcriptional Interaction of an Estrogen Receptor Splice Variant and ErbB4 Suggests Convergence in Gene Susceptibility Pathways in Schizophrenia THE JOURNAL OF BIOLOGICAL CHEMISTRY 2009; 284(28):18824–18832.
  3. 9.113  Yiu H.P., Stuart C. McBain, Zoe A. D. Lethbridge, Martin R. Lees, Jon Dobson. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. Journal of Biomedical Materials Research Part A 2009; 386-392.
  4. 9.114  Hofmann A., Wenzel D., Becher U.M., Freitag D.F., Klein A. M., Eberbeck D., Schulte M., Zimmermann K., Bergemann C., Gleich B., Roell W., Weyh T., Trahms L., Nickenig G., Fleischmann B. K. and Pfeifer A. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. PNAS 2009; 106 (1): 44-49.
  5. 9.115  Hofmann et al. Supporting Information. 10.1073/pnas.0803746106, PNAS 2009: 1-9.

page39image3286016

chemicell GmbH • MagnetofectionTM 2.4 38

page39image3284864

References

page40image3447552

9.116Saeki Yuko, Takaho Endo, Kaori Ide, Takeshi Nagashima, NorikoYumoto, TetsuroToyoda, Harukazu Suzuki, Yoshihide Hayashizaki, Yoshiyuki Sakaki and Mariko Okada-Hatakeyama. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells. BMC Genomics 2009; 10: 545.

  1. 9.117  Lee K Y, Hyungu Kang, Sung Ho Ryu, Dong Soo Lee, Jung Hwan Lee and Soon hag Kim.

    Bioimaging of Nucleolin Aptamer-Containing 5-(N-benzylcarboxyamide)-2’-deoxyuridine More Capable of Specific Binding to Targets in Cancer Cells. Journal of Biomedicine and Biotechnology 2010; Volume2010, Article ID168306, 9 pages.

  2. 9.118  Song Hai Peng, Jing Ye Yang, Seong Loong Lo, Yi Wang, Wei Min Fan, Xiao Sheng Tang, Jun Min Xue, Shu Wang. Genetransfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 2010; 31: 769–778.
  3. 9.119  Nakakuki Takashi, Marc R. Birtwistle, Yuko Saeki, NorikoYumoto, Kaori Ide, Takeshi Nagashima, Lutz Brusch, Babatunde A.Ogunnaike, Mariko Okada-Hatakeyama and Boris N. Kholodenko. Ligand-Specific c-Fos Expression Emerges from the Spatiotemporal Control of ErbB Network Dynamics. Cell 2010; 141: 1-19.
  4. 9.120  Ensenauer R., D. Hartl , J. Vockley, AA. Roscher, U. Fuchs. Efficient and gentle siRNA delivery by Magnetofection. Biotechnic & Histochemistry 2010, Early Online, 1–6.
  5. 9.121  Holzbach T., Dialekti Vlaskou, Iva Neshkova, Moritz A. Konerding, Klaus Wörtler, Olga Mykhaylyk, Bernd Gänsbacher, H.-G. Machens, Christian Plank, Riccardo E. Giunta. Non-viral VEGF165 gene therapy – magnetofection of acoustically active magnetic lipospheres (‘magnetobubbles’) increases tissue survival in an oversized skin flap model. J. Cell. Mol. Med. 2010; Vol 14(3): 587-599.
  6. 9.122  Vlaskou D, Olga Mykhaylyk, Florian Krötz, Nicole Hellwig, Ritta Renner, Ulrike Schillinger, Bernhard Gleich, Alexandra Heidsieck, Georg Schmitz, Karin Hensel and Christian Plank. Magnetic and Acoustically Active Lipospheres for Magnetically Targeted Nucleic Acid Delivery. Advanced Functional Materials Volume 20, Issue 22, pages 3881–3894, November 23, 2010.

9.123Pino P., Almudena Munoz-Javier, Dialechti Vlaskou, Pilar Rivera Gil, Christian Plank and Wolfgang J. Parak Gene Silencing Mediated by Magnetic Lipospheres Tagged with Small Interfering RNA. Nano Lett., 2010, 10 (10), pp 3914–3921.

9.124Pino P., Almudena Munoz-Javier, Dialechti Vlaskou, Pilar Rivera Gil, Christian Plank and Wolfgang J. Parak Gene Silencing Mediated by Magnetic Lipospheres Tagged with siRNA. Nano Lett., 2010, SUPPORTING INFORMATION.

9.125Pino P., Almudena Munoz-Javier, Dialechti Vlaskou, Pilar Rivera Gil, Christian Plank and Wolfgang J. Parak. Gene Silencing Mediated by Magnetic Lipospheres Tagged with siRNA. Nano Lett., 2010, SUPPORTING INFORMATION.

  1. 9.126  Fouriki A., N. Farrow, M.A. Clements and J. Dobson. Evaluation of the magnetic field requirements for nanomagnetic gene transfection. Citation: Nano Reviews 2010, 1: 5167 – DOI: 10.3402/nano.v1i0.5167.
  2. 9.127  Ang D., Q.V. Nguyen, S. Kayal, P.R. Preiser, R.S. Rawat, R.V. Ramanujan. Insights into the mechanism of magnetic particle assisted gene delivery. Acta Biomaterialia 2011; Vol. 7: 1319–1326.

page40image3447168

chemicell GmbH • MagnetofectionTM 2.4 39

page40image3484352

References

page41image3425600

  1. 9.128  Li Fang, Sumei Niu, Jing Sun, Huaishi Zhu, Qiujie Ba, Yi Guo, and Donglu Shi. Efficient In Vitro TRAIL-Gene Delivery in Drug-Resistant A2780/DDP Ovarian Cancer Cell Line via Magnetofection. Journal of Nanomaterials 2011, Article ID 484589, 7 pages.
  2. 9.129  Lee Soondong, Gayong Shim, Sunil Kim, Young Bong Kim, Chan-Wha Kim, Youngro Byun, and Yu-Kyoung Oh. Enhanced Transfection Rates of Small-Interfering RNA Using Dioleylglutamide-Based Magnetic Lipoplexes. NUCLEIC ACID THERAPEUTICS 2011; Volume 21, Number 3.
  3. 9.130  Plank Ch., Olivier Zelphati, Olga Mykhaylyk. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection — Progress and prospects. Advanced Drug Delivery Reviews 2011; Article in press, 32 pages.
  4. 9.131  Baryshev M., D.Vainauska, S. Kozireva and A.Karpovs. New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells. World Academy of Science, Engineering and Technology 2011; 58: 306-309.
  5. 9.132  Naruo Yoshimi, Takeshi Nagashima, Ryoko Ushikoshi-Nakayama, Yuko Saeki, Takashi Nakakuki, Takashi Naka, Hiroshi Tanaka, Shih-Feng Tsai, Mariko Okada-Hatakeyama. Epidermal growth factor receptor mutation in combination with expression of MIG6 alters gefitinib sensitivity. BMC Systems Biology 2011, 5:29.

9.133Cho Ssang-Goo, Sachin Honguntikar and Hyun Joo Lee. Application of Magnet-based Nanofection in Embryonic Stem Cell Research. Methodological Advances in the Culture, Manipulation and Utilization of Embryonic Stem Cells for Basic and Practical Applications 2011 Edited by Prof. Craig Atwood (Hard Cover Book) pp 307-327.

  1. 9.134  Cui Jinhui, Haixin Cui, YanWang, Changjiao Sun, Kui Li, Hongyan Ren, and Wei Du. Application of PEI-ModifiedMagnetic Nanoparticles as Gene Transfer Vector for the GeneticModification of Animals. Advances in Materials Science and Engineering 2011; Vol. 2012, Article ID 764521, 6 pages.
  2. 9.135  Durdik S., M. Babincov ́a, C. Bergemann and P. Babinec. Nanosecond laser pulse induced stress waves enhanced magnetofection of human carcinoma cells in vitro. Laser Phys. 2012 Lett. 9, No. 9, 678–681.
  3. 9.136  Vainauska Dace, Svetlana Kozireva, Andrejs Karpovs, Maksims Čistjakovs, Mihails Bariševs. A Novel Approach for Nucleic Acid Delivery Into Cancer Cells. Medicina (Kaunas) 2012;48(6):324-9.
  4. 9.137  Jeon K, Lim H, Kim JH, Thuan NV, Park SH, Lim YM, Choi HY, Lee ER, Kim JH, Lee MS, Cho SG.

    Differentiation and transplantation of functional pancreatic Beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model.
    Stem Cells Dev. 2012 Sep 20;21(14):2642-55. Epub 2012 Jun 1.

  5. 9.138  Park Young-Kwon and Hyunsung Park. Differentiated embryo chondrocyte 1 (DEC1) represses PPARƔ2 gene through interacting with CCAAT/enhancer binding protein ß (C/EBPß). Mol. Cells 2012; 33: 575-581.
  6. 9.139  Saeki Y, Nagashima T, Kimura S, Okada-Hatakeyama M. An ErbB receptor-mediated AP-1 regulatory network is modulated by STAT3 and c-MYC during calcium-dependent keratinocyte differentiation. Exp Dermatol. 2012 Apr; 21(4): 293-298.

page41image3430784

chemicell GmbH • MagnetofectionTM 2.4 40

page41image3426944

References

  1. 9.140  Sun SL, Lo YL, Chen HY, Wang LF. Hybrid polyethylenimine and polyacrylic acid-bound iron

    oxide as a magnetoplex for gene delivery. Langmuir. 2012 Feb 21; 28(7): 3542-3552.

  2. 9.141  Park Hyo Young, Eun Hyung Noh, Hyung-Min Chung, Man-Jong Kang, Eun Young Kim, Se Pill Park.Efficient Generation of Virus-Free iPS Cells Using Liposomal Magnetofection. PLOS ONE 2012, Vol.7, Issue 9.
  3. 9.142  Prijic Sara , Lara Prosen, Maja Cemazar, Janez Scancar, Rok Romih, Jaka Lavrencak, Vladimir B. Bregar, Andrej Coer, Mojca Krzan, Andrej Znidarsic, Gregor Sersa. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials 2012; 33: 4379-4391.
  4. 9.143  Tencomnao Tewin, Kewalin Klangthong, Nuttaporn Pimpha, Saowaluk, Chaleawlert-umpon Somsak Saesoo, Noppawan, Woramongkolchai, Nattika Saengkrit. Acceleration of gene transfection efficiency in neuroblastoma cells through polyethyleneimine/poly(methyl methacrylate) core- shell magnetic nanoparticles. International Journal of Nanomedicine 2012:7 2783–2792.
  5. 9.144  Avotina Dace, Svetlana Kozireva, Andrejs Karpovs, Maksims Chistyakovs, Mikhail Baryshev.

    Dynamic Magnetic Field Increases Intracellular Magnetic Labelling of Prostate Carcinoma and Burkitt’s Lymphoma Cells. Collection of Scientific Papers: Research articles in medicine & pharmacy, 2012: Internal Medicine. Surgery, pages: 65 – 70.

  6. 9.145  Park Youn Hee, Young Mi Lee, Dong Sun Kim, Jaechan Park, Kyoungho Suk, Jong Kun Kim and Hyung Soo Han. Hypothermia enhances induction of protective protein metallothionein under ischemia. Journal of Neuroinflammation 2013, 10:21.
  7. 9.146  Aurora Sandeep, Girish Gupta, Sukhbir Singh and Neelam Singh. Advances in Magnetofection – Magnetically Guided Nucleic Acid Delivery: a Review. Journal of Pharmaceutical Technology, Research and Management May 2013, Vol. 1: pp. 19–29.
  8. 9.147  Lee Jung-Tae, Jae-Whan Jung, Jae-Yong Choi, Tae-Geon Kwon. Enhanced bone morphogenic protein adenoviral gene delivery to bone marrow stromal cells using magnetic nanoparticle. J Korean Assoc Oral Maxillofac Surg 2013, 39:112-119.
  9. 9.148  Wong Jenny, Carlotta E. Duncan, Natalie J. Beveridge, Maree J. Webster, Murray J. Cairns, and Cynthia Shannon Weickert. Expression of NPAS3 in the Human Cortex and Evidence of Its Posttranscriptional Regulation by miR-17 During Development, With Implications for Schizophrenia. Schizophrenia Bulletin 2013; vol. 39 no. 2 pp. 396–406.